

Meeting del 45° parallelo IBD and liver hemisphere

Surgery in Crohn's patient: How and when?

Prof. Imerio AngrimanAzienda Ospedaliera Università di Padova DiSGOGUOC Chirurgia Generale 3Dir. S. Pucciarelli

Surgery for Crohn's disease in the era of biologics

Bouguen G, Peyrin-Biroulet L. Gut 2011

Natural disease course of Crohn's disease during the first 5 years after diagnosis in a European population based inception cohort: an Epi-IBD study

Johan Burisch et al Gut 2018

Surgical role: resolving complications, disease remission & recurrence prevention

Topics

- Surgical indications
- Timing for surgery
- Extension of resection
- Gut sparing techniques
- Anastomosis model
- Preventing surgical complications

Surgical management of Crohn's disease: a state of the art review

International Journal of Colorectal Disease (2021)

Elise Maria Meima - van Praag¹ · Christianne Johanna Buskens¹ · Roel Hompes¹ · Wilhelmus Adrianus Bemelman¹

Large bowel Crohn's disease surgical indications

- Refractory disease
- Obstructive disease
- Fistulizing disease
- Perineal
- Suspicion of Cancer

Colonic stricture in Crohn's disease

- Colonic sricture in any setting should be considered malignant until proven otherwise
- Dysplaisa and carcinoma
 - Difficult to detect
 - Traversable, examinable
 - Sample errors
- Segmental management if rest of the colon has been assessed fully

LIR!C TRIAL

Laparoscopic ileocaecal resection vs infliximab (RCT) Terminal ileitis in Crohn's disease

- Better quality of life at one year
- Ponsioen C.Y. et al., Lancet Gastroenterol Hepatol. (2017)
- Reduced cost

de Groof E.J. et al., Gut (2019)

Reduced need of postoperative medications at 5 yy

Stevens T.W. et al. Lancet Gastroenterol Hepatol. (2020)

Early surgery in newly diagnosed ileocolonic Crohn's disease: long term disease activity and quality of life 77 consecutive pts **Aim:** to analyze the recurrence rate, disease activity, and quality of life in patients who underwent resection for newly diagnosed CD 30 early surgery 47 late surgery (< 36 months) (> 36 months) QoL (Cleveland Disease activity Surgical global quality of (Harvey recurrence Bradshaw) life CGQL)

Angriman I et al DDW 2023

Results: QoL and disease clinical activity at follow-up

Results: Surgical Recurrence

Time (months)

Angriman I et al DDW 2023

I Angriman et al 2024

Pathological analysis

I Angriman et al 2024

Results – IHC & digital microscopy image analysis

Cai	ratteristiche anatomo-patologiche	Grado di fibrosi	Score
•	Fibrosi assente o minima e limitata alla sottomucosa (<25% dello spessore parietale)	Negativo	0
•	Stenosi lieve (>15 mm) senza dilatazione a monte; fibrosi sottomucosa e iperplasia muscolare >25% con strati preservati	Lieve/mod erato	1
•	Fibrosi transmurale massiva; scomparsa dei normali strati; stenosi severa	Severo	2

Chiorean M.V. et al., Am J Gastroenterol. (2007)

Short-Term Results of Operative Treatment of Primary Ileocecal Crohn's Disease: Retrospective, Comparative Analysis between Early (Luminal) and Complicated Disease

MDPI

Journal of Clinical Medicine

Extension of the resection

Statement 2.10.

Minimal length rather than radical extended resection is currently recommended for excision of small bowel disease.

Level of evidence: I Grade of recommendation: A Consensus: 93.8% (SA 46.9%, A 46.9%)

Surgical resections for CD should be as conservative as possible (EL2)

The role of inclusion of the mesentery in resections for ileocolic CD has to be evaluated, and extended mesenteric resection cannot be currently recommended (EL5).

Original Article

Inclusion of the Mesentery in Ileocolic Resection for Crohn's Disease is Associated With Reduced Surgical Recurrence

Calvin J. Coffey,^{a,b,c*} Miranda G. Kiernan,^{b,c*} Shaheel M. Sahebally,^{a,b,c*}

Journal of Crohn's and Colitis, 2018,

Conventional -A G Mesentery retained 1.0 Cohort B (mesentery included) p=0.003 0.8 (log rank analysis) Cohort A (mesentery not included) B Mesocolic excision -Mesentery removed 0.2 -0.0 -20 30 40 50 60 70 0 10 80 Times (months)

Table 3. Multivariable analysis of association between known fac-tors of surgical recurrence and development of recurrence requir-ing surgical intervention.

Variable	Univariable analysis [p-value]	Multivariable analysis [p-value]
Gender	1.000	
Smoking at time of surgery	0.015	0.010
Age at diagnosis	0.934	
Disease phenotype	0.029	0.048
Disease location	0.469	
Age at surgery	0.788	
Non-mesenteric resection	0.004	0.007
Duration of disease	0.584	
Duration of follow-up	0.363	

Extended mesenterectomy is not superior to mesenteric sparing resection in primary ileocolic resection for Crohn's Disease in terms of postoperative endoscopic recurrence – results of an international randomised controlled trial

E. Van Der Does De Willebois

19TH CONGRESS OF ECCO, FEBRUARY 21-24, 2024, STOCKHOLM/SWEDEN

Results

- No difference in endoscopic recurrence rates
 - 27/62 (43.5%) in the intervention group
 - 27/64 (42.2%) in the control group, (p=1.0)
- Crohn's medication after six months,
 - 48% in the intervention group
 - 41% in the control group.

No significant difference in

- length of resection specimen (median length colon 7cm; ileum 22.5cm),
- blood-loss or operative time.

Effect of anastomotic configuration on Crohn's disease recurrence after primary ileocolic resection: a comparative monocentric study of end-to-end versus side-to-side anastomosis

Updates In Surgery (2023)

Gabriele Bislenghl¹ · Peter-Jan Vancoillie¹ · Steffen Fieuws² · Bram Verstockt^{3,4} · Joao Sabino^{3,4} · Albert Wolthuis¹ · André D'Hoore¹

Surgical Recurrence at Anastomotic Site After Bowel Resection in Crohn's Disease: Comparison of Kono-S and End-to-end Anastomosis

Norimitsu Shimada¹ • Hiroki Ohge¹ • Toru Kono² • Ayumu Sugitani² • Raita Yano¹ • Yusuke Watadani¹ • Kenichiro Uemura¹ • Yoshiaki Murakami¹ • Taijiro Sueda¹

Journal of Gastrointestinal Surgery (2019)

Postoperative endoscopic recurrence after resection of Crohn's terminal ileitis with Kono-S or side-to-side functional end anastomosis: results of a Multicenter Prospective Randomized Trial

K. Trencheva et al 19TH CONGRESS OF ECCO, FEBRUARY 21-24, 2024, STOCKHOLM/SWEDEN

Results: No significant difference between the two groups in terms of

- endoscopic recurrence (p = 0.883)
- clinical recurrence HBI (p = 0.109)
- recurrence-free survival (Log Rank Mantel-Cox test p = 0.256)
- Multivariable analysis: current smokers had significantly higher odds for endoscopic recurrence at 3-6 months (OR= 2.80, [95% CI =1.10 - 6.92], p = 0.029).

SURGERY TODAY

I Angriman et al Surg Today 2023

LOCAL disease Activity Fecal Calprotectin

I Angriman et al Surg Today 2023

Postoperative MRI was performed in 19 patients in our Hospital at a median time of 16 (14-23,5) months after surgery

	Preoperative Mean (SD)	Postoperative Mean (SD)	P value Wilcoxon
RCE	111,93(66,13)	123,79 (60,95)	0,563
ADC	0,861 (0,12)	0,995 (0,21)	0,046
Wall-thickness	7,15 (1,22)	5,21 (1,13)	0,000
MaRIA	19,03 (6,76)	12,65 (3,43)	0,001
Clermont	24,16 (4,79)	18,38 (2,05)	0,000
Edema	0,68 (0,47)	0,47 (0,51)	0,289
Fissures	0,26 (0,45)	0 (0)	0,063

Resection vs stricureplasty Clinical, endoscopic and surgical recurrence.

SURGERY TODAY

Fibrotic nature of the stenosis
Multifocal jejunal ileal diseases

Crohn's colitis the fenotype drive type of resection

Segmental colectomy vs total colectomy

Systematic review

Figure 3

Surgical recurrence SC vs STC

	SC		STO	;		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl
Andersson	12	31	12	26	16.2%	0.74 [0.26, 2.12]		
Andrews	43	90	45	80	50.4%	0.71 [0.39, 1.30]		
Fichera	19	54	8	49	11.0%	2.78 [1.09, 7.13]		
Kiran	13	49	8	59	10.8%	2.30 [0.87, 6.13]		
Prabhakar	14	39	2	10	4.1%	2.24 [0.42, 12.04]		
Sanfey	7	14	7	13	7.4%	0.86 [0.19, 3.89]		
Total (95% CI)		277		237	100.0%	1.19 [0.81, 1.74]		•
Total events	108		82					
Heterogeneity: Chi ² =	9.16, df=	5 (P =	0.10); l² =	= 45%			0.01	0.1 1 10
Test for overall effect	Z = 0.90	(P = 0.3	37)				0.01	Favours [SC] Favours [STC

Surgical recurrence STC vs TPC

	subtotal cole	ctomy	total proctocole	ectomy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Andrews 1989	45	80	27	110	46.5%	3.95 [2.13, 7.34]	_ _
Fichera 2005	8	49	4	76	12.3%	3.51 [1.00, 12.38]	
Yamamoto 1999	30	65	19	86	41.2%	3.02 [1.49, 6.12]	
Total (95% CI)		194		272	100.0%	3.52 [2.27, 5.44]	•
Total events	83		50				
Heterogeneity: Chi ² =	0.31, df = 2 (P =	0.85); I ²	= 0%				0.05 0.2 1 5 20
Test for overall effect:	Z = 5.65 (P < 0.0	00001)					Favours [STC] Favours [TPC]

Figure 5

Stoma formation SC vs STC

	segmental cole	ctomy	subtotal cole	ctomy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
Andersson 2002	1	31	5	26	22.3%	0.14 [0.02, 1.29]	
Holubar 2010	4	32	13	33	47.5%	0.22 [0.06, 0.77]	
Prabhakar 1996	1	39	2	10	13.2%	0.11 [0.01, 1.31]	
Sanfey 1984	5	14	6	13	17.0%	0.65 [0.14, 3.04]	
Total (95% CI)		116		82	100.0%	0.26 [0.11, 0.59]	•
Total events	11		26				
Heterogeneity: Chi2 =	2.21, df = 3 (P = 0	.53); 2 = (0%				
Test for overall effect:	Z = 3.21 (P = 0.00	01)					0.01 0.1 1 10 100 Favours [segmental] Favours [subtotal]

Permanent stoma SC vs STC

	SC		STO			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Andersson	4	31	5	26	6.9%	0.62 [0.15, 2.61]	
Andrews	12	90	28	80	37.7%	0.29 [0.13, 0.61]	
Fichera	17	54	11	49	11.6%	1.59 [0.66, 3.84]	
Holubar	3	32	11	33	14.4%	0.21 [0.05, 0.83]	
Kiran	7	49	7	59	8.0%	1.24 [0.40, 3.81]	
Longo	4	31	3	6	6.4%	0.15 [0.02, 1.00]	
Prabhakar	6	39	1	10	2.0%	1.64 [0.17, 15.40]	1 · · · · · · · · · · · · · · · · · · ·
Sanfey	2	14	10	13	13.0%	0.05 [0.01, 0.36]	· · · · · ·
Total (95% CI)		340		276	100.0%	0.51 [0.34, 0.76]	•
Total events	55		76				
Heterogeneity: Chi ² =	20.59, df	= 7 (P	= 0.004);	I ² = 66	%		0.01 0.1 1 10
Test for overall effect							0.01 0.1 1 10 Favours [SC] Favours [ST

Angriman et al Colorecral Disease 2017

Segmental Versus Total Colectomy for Crohn's Disease in the Biologic Era: Results From The SCOTCH International, Multicentric Study Gianluca Pellino Journal of Crohn's and Colitis, 2022, 16,

Table 3. Multivariate analysis using Cox's proportional hazard model of patients presenting with one to three colonic locations

	Hazard ratio	95% CI	Wald's statistics	Þ
Age [¶] [A1 vs A2 and A3]	2.8	2.3-3.0	7.9	0.004
Behaviour [¶] [B1 vs B2 and B3]	0.9	0.8-1.1	1.1	0.2
Perianal disease	1.9	1.5-2.5	3.6	0.04
Number of colonic locations [1–2 vs 3]	2.5	2.2-3.8	6.2	0.01
Smoking habit	0.2	0.1-0.7	0.1	0.7
IBD family history	0.6	0.4-0.9	0.2	0.5
Extraintestinal manifestations	0.2	0.1-0.3	0.05	0.8
Small bowel resection	0.9	0.7-1.3	0.9	0.3
Definitive stoma	0.4	0.2-0.6	1.3	0.7
No biological therapy [§]	5.6	5.2-6.1	30.2	< 0.0001

Intra-abdominal septic complications after ileocolic resection increases risk for endoscopic and surgical postoperative Crohn's disease recurrence Salam

Salam P. Bachour

Journal of Crohn's and Colitis, 2022, 16,

Risk factors for post-operative complications

- Older age
- Emergent or urgent surgery
- Experience of the surgeon

Non-modifiable factors

- Preoperative immunosopressive medications
- Malnutrition
- Anemia
- Smoking
- Intra-abdominal sepsis

MDT

Hareem Syed et al Current Gastroenterology Reports (2024)

Do biologics increase perioperative complications in patients with CD?

- Known risk factors associated with perioperative complications in CD: low serum albumin levels, pre-operative steroid use and pre-operative abscess.
- And biologics...????

Literature	Significant increase in anastomotic complications?	Significant increase in total infectious complications?
Narula et al. (2013) [75]	Not separately examined	Yes, RR = 1.93 (95% CI: 1.28-2.89)
El-Hussuna et al. (2013) [76]	Yes (low bias studies), RR = 1.63 (95% CI: 1.03–2.60) No (medium bias studies), RR = 0.17 (95% CI: 0.05–0.60)	No, RR = 1.15 (95% CI: 0.86–1.53)
Kopylov et al. (2012) [77]	No, OR =1.18 (95% CI: 0.61-2.30)	No, OR = 1.62 (95% CI: 0.92-2.86)
Billioud et al. (2013) [78]	Not separately examined	Yes, OR = 1.45 (95% CI: 1.03-2.05)
Waterland et al. (2016) [79]	No, OR = 1.19 (95% CI: 0.82–1.71)	Yes, OR = 1.52 (95% CI: 1.14-2.03)
Yang et al. (2014) [80]	Not separately examined	Yes, OR = 1.47 (95% CI: 1.08-1.99)

Table 2. Summary of meta-analyses of perioperative complications in patients with Crohn's disease on biologic therapy

OR, odds ratio; RR, relative risk; CI, confidence interval.

Perianal disease

Perineal CD: current treatament strategies

- Antibiotics
- Immunomodulators
- Biologic drugs
- Surgical options
 - Drainage seton
 - Definitive repair
 - Temporary defunctioning stoma (31 49%, restoration 17%)
 - Proctectomy (refractory rectal disease, ano-rectal stenosis)
 - Perineal wound problems following proctectomy (23 79%)

Samuel O Adegbola Frontline Gastroenterology 2021Yassin NA et al Aliment Pharmacol Ther 2014Julian Panes et al W.J.G. 2018Singh S, Aliment Pharmacol Ther 2015

Temporary Faecal Diversion for Refractory Perianal and/ or Distal Colonic Crohn's Disease in the Biologic Era: An Updated Systematic Review with Meta-analysis

Michael Jew,^a Joseph Meserve,^b Samuel Eisenstein,^{c,} Vipul Jairath,^{d,e,} Jeffrey McCurdy,^{f,g} Siddharth Singh^{b,h,}

	Pre- biologic cra [pooled rate, 95% CI]	Overlapping period between pre-biologic and biologic era [pooled rate, 95% CI]	Biologic era [pooled rate, 95% CI]	<i>p</i> -value
Short-term clinical improvement	77% [64–86%]	81% [58–93%]	50% [42–59%]	0.001
Attempted restor- ation of bowel continuity	29% [18–44%]	32% [20-47%]	37% [28–47%]	0.64
Successful restor- ation of bowel continuity	17% [9–29%]	19% [10-35%]	24% [17–31%]	0.59
Need for comple- tion proctectomy	38% [29–49%]	41% [29–55%]	31% [26–36%]	0.18

Proctectomy for proctitis with perineal disease

- Complications up to 50% of patients
 - Persistent perineal sinus
 - Non healing perineal wound

Staged operations:

- Low proctectomy
- Perineal proctectomy

Scammel et al BMJ 1986, Chau et al L. Arch. Surg 2017

Time in weeks since APR

Proctectomy in Crohn's disease

• Crohn's mesorectum contain a lot of proinflammatory macrophages.

Proctectomy in Crohn's disease

- Excision meserectum (TEM)
- Omentoplasty
- Intersphinteric excision

De Groof et al JCC 2018

Perineal Crohn's disease treatment, drainage seton

Short-term anti-TNF therapy with surgical closure versus anti-TNF therapy alone for Crohn's perianal fistulas (PISA-II): long-term outcomes of an international, multicentre patient preference, randomised controlled trial

Elise M. Meima - van Praag,^a Marte A. J. Becker,^b Kyra L. van Rijn,^c Karin A. T. G. M. Wasmann,^a Jaap Stoker,^c Geert R. A. M. D'Haens,^d Cyriel Y. Ponsioen,^d Krisztina B. Gecse,^d Marcel G. W. Dijkgraaf,^e Antonino Spinelli,^f Silvio Danese,^g Willem A. Bemelman,^{a,g} and Christianne J. Buskens^{a,*}

eClinicalMedicine Part of THE LANCET Discovery Science

2023

	Short-term anti-TNF treatment + surgical closure (n = 36)	Anti-TNF (n = 55)
Follow-up, median years (IQR)	6.1 (4.8-7.4)	5.4 (4.3-6.8)
Age at inclusion, median years (IQR)	32 (26-51)	35 (26-46)
Female, n (%)	21 (58)	33 (60)
Male, n (%)	15 (42)	22 (40)
Active smoker at baseline, n (%)	12 (33)	16 (29)
BMI at baseline, median kg/m ² (IQR)	24 (21-27)	23 (21-27)
Montreal disease location, n (%)		
- L1: Ileal	25 (69)	33 (60)
- L2: Colonic	6 (17)	8 (15)
- L3: Ileocolonic	5 (14)	14 (25)
- L4: Isolated upper disease	0 (0)	0 (0)
Previous anti-TNF treatment at baseline ^a , n (%)	15 (42)	20 (36)
Crohn's disease duration at baseline, median years (IQR)	3 (1-9)	5 (1-14)
Number of external openings at baseline, median (IQR)	1 (1-2)	1 (1-2)
QR, interquartile range; BMI, Body Mass Index. ^a More than 6 months a	go.	
Table 1: Baseline characteristics included patients.		

Chronic seton treatment should not be recommended as the sole treatment for perianal Crohn's fistulas

Complex Perianal disease SURGICAL REPAIR

Rescue *failed biosurgical therapy BUT optimized mucosa*

Endorectal advancement FLAP

Proposed algorithm for the treatment of perianal Crohn's disease EUA, examination under anaesthesia; TNF, ...

The content of this slide may be subject to copyright: please see the slide notes for details.

Conclusions

- Surgical timing and patient optimization for surgery can make a difference
- There is no evidence that the surgical techniques can reduce recurrence rate
- Stricureplasty for multifocal jejunal-ileal diseases
- Bowel sparing in Crohn's colitis reduces the risk of permanent stoma
- Proactive surgical attitude in perianal disease can improve outcomes.

Thank you