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Current main unmet clinical needs in hepatology to which AI could theoretically 

contribute for the daily practice:

➢ Non invasive precise fibrotic staging of chronic liver disease

➢ Non invasive distinction between MASLD and MASH 

➢ Improved non invasive diagnosis of HCC and of its molecular characterization

➢ Individual precise prediction of the risk of HCC development

➢ Improved histological diagnosis

➢ Prediction of the response of HCC to treatment and risk of recurrence

➢ Identification of complex / rare etiologies of liver lab exam abnormalities

➢ Identification of subphenotypes within current single etiology and corresponding 

natural course of disease and response to treatment



ALL fields

Indeed, published research about applications of AI in liver disease has 
been largely addressed to the unmet clinical needs in hepatology so far 





Imaging is very rich of information and data are 
easier to be extracted / collected and heterogeneity 
easier to be recognized and managed than 
laboratory / clinical data. Convolutionary Neural 
Networks models mainly apply.  

Radiological Images
Histological images



Hye Won Lee et al Artificial intelligence in liver disease

Journal of Gastroenterology and Hepatology 36 (2021) 539–542



In front of all such efforts which are the main issues to be carefully taken into 

consideration before arriving to clinical applications of AI in liver disease?



• Ground truth (i.e. reference standards)

• Clinicallly meaningful thresholds for diagnostic accuracy

• Responsibility

• External accessibility

• Applicability

Common issue to be considered before using AI in clinical 

practice (also in hepatology.



In order to train the AI outcomes must be “labeled” (=correctly and definitively diagnosed)

However, in the instance of focal liver lesions at risk for HCC or in the instance of NAFLD the 

ground truth (“reference standard”) is problematic. 

The optimal ”ground truth” would be histology. However, this is not systematically available 

in the instance of non-HCC lesions (e.g. LI RADS L2, LR3 and several LR4 lesions) and similarly 

also in the instance of MASLD (to ascertain the presence of MASH and degree of fibrosis severity). 

Therefore, the available case series based on which AI models are developed often contain 

selected cases, which might not adequately represent the general population to which the AI model 

is expected to be applied in the clinical practice.

In the clinical practice many more non malignant lesions are visualized by radiology than those for 

which histology is available. 

Should potentially AI models work at at a “patient” base rather than “lesion” base in this setting?

Ground truth issue.



They used electronic health records from the Optum 
Analytics to:
(1) identify patients diagnosed with either benign 

steatosis (NAFL) or NASH based on ICD codes
(2) train machine learning classifiers for NASH and 

healthy (non-NASH) populations 
(3) predict NASH disease status on patients diagnosed 

with NAFL.



The performance metrics from 4 popular machine learning 

classifiers, Logistic Regression20 , Decision Tree21 , 

Random Forest22 , and XG-Boost23.

It is clear that while all classifiers perform well at 

classifying positive and negative examples of NASH, we 

gain performance boost at the cost of interpretability with 

the XGBoost model, which shows an AUROC of 88%.

They usedXGBoost to make prediction of NASH 

on a third cohort of benign fatty liver (NAFL) 

patients. Consistent with recorded prevalence of 

diabetes, the NAFL cohort classified as NASH 

using the model had significantly higher 

prevalence of diabetes (48%) when compared to 

those classified as Healthy (18%).



The performance metrics from 4 popular machine learning 

classifiers, Logistic Regression20 , Decision Tree21 , 

Random Forest22 , and XG-Boost23.

It is clear that while all classifiers perform well at 
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patients. Consistent with recorded prevalence of 

diabetes, the NAFL cohort classified as NASH 

using the model had significantly higher 

prevalence of diabetes (48%) when compared to 

those classified as Healthy (18%).

Pontentially useful as a case finding method, but not to estalish any 
diagnosis of NASH given the relatively weak unverified ground truth.

Each new potential AI application must be adopted strictly according to 
the ground truth utilized to set it up.



AI models are expected to improve the current diagnostic / prognostic capacities.

However, not any improvement translate into a clinically meaningful application 

and in order to replace a current ground truth (despite this may be imperfect or 

impracticle to achieve) the scientific community has to establish thresholds for 

clinically significant improved performance. 

E.g.: current standard models to distinguish simple NAFLD from NASH are largely suboptimal, with 

diagnostic accuracies in the range of 0.60-0.65. If an AI model increases this rate to 0.70 it would 

be a huge step forward in statistical terms, but would it make any clinically relevant impact? Would 

a positive predictive values for NASH raised from 65% to 75% change the clinical practice?.

Increasing the positive predictive value of the LR4 class for FLL at risk of HCC from 85% to 89% or 

for LR3 from 35% to 50% would be scientifically relevant, but would it bring any clinical impact? 

Which is the desired threshold for which an AI model would be accepted? To include a patient in a 

trial for NASH with fibrosis ≥F2, without obtaining histology, which would be the minimal accepted 

diagnostic likelyhood ratio of an AI model (>10, >15, >20 or PPV >95% or 98%, etc)?

Thresholds for clinical impact of AI models



Radiomics in indeterminate nodules at risk for HCC. Radiomics signature performance may
improve existing clinical classification.

Radiomics after LI RADS

Step 1
LI-RADS 

Qualitative 
evaluation

LR-1

LR-2

LR-3

LR-4

LR-5

No HCC

HCC

Step 2
Radiomics signature

machine-learning

Se = 0.70
AUC = 0.66

178 cirrhotic patients

Mokrane Eur Radiol 2020



Radiomics after LI RADS
HCC Non HCC

Mokrane Eur Radiol 2020

Radiomics in indeterminate nodules at risk for HCC. Radiomics signature performance may
improve existing clinical classification.



Who is responsible for the final diagnosis?

Should patients have access to the information provided by AI tools or is it only a 

part of the diagnostic process (and not the conclusion)?

Example (the same may apply to liver tumors in the future):

Responsibility and accessibility





MB = Medulloblastoma

PA = Pilocytic astrocytoma

DMA = Diffuse midline glyoma

EP = Ependymoma

CAMs = class actrivation maps

The model suggest a degree of probability 
of specific tumor type, which may o may 
not coincide with the reference truth or 
the expert radiologist opinion



CAMs = class activation maps

Important and potentially useful strategy 
also in liver tumors to help EXPLANABILITY



In the setting of liver cancer the different tumor types could be replaced by the 
different LI RADS classes

Interobserver variability is known and accepted to a certain degree, but each observer is 
set responsible for his own tasks. But with AI models one «operator» servers the second. 
Explanability of AI models are needed in order to understand discrepancy 
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Radiomics

Courtesy of Prof. Greco

Radiomics VS Deep Learning
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Radiomics VS Deep Learning
Deep learning: better performance (?) (lower explanability?)

Courtesy of Prof. Greco



Possible interobserver variability 
impacting model development



229 pathologically confirmed nodules (173 HCCs) in 211 patients
AUCs of the radiomics signature (0.810), LI-RADS (0.841) and EASL criteria (0.811)

Jiang Cancer Imaging 2019

Classification of nodules at risk for HCC. Not always radiomics signature alone perform
better than other classifications.

Radiomics versus LI RADS



Classification of nodules at risk for HCC. Radiomics signature performance may be improved
by its addition on existing clinical informations

150 cirrhotic patients 
Small liver nodules (HCC, 112; non malignant nodules, 44) 
8 features: radiomics signature extracted from T1-W, T2W, and ADC

Radiomics LI-RADS + radiomics

Zong BMC Gastroenterol 2021

Radiomics with LI RADS



Possible exemplary hurdle in the implementation of AI models into a liver tumor setting.
Responsibility and accessibility

E.g. a 22 mm FLL detected close to the right portal vein branch. Not fully meeting LR5 class criteria (i.e. HCC)

The new hypothetical model says HCC 80%, HGDN 12%, LDGN 8% 

Radiologist concludes:  L3, likely HGDN. Location makes biopsy not easy. Consequently, no treatment is planned 
at the moment. Patient changes, however, follow up interval from 6 (surveillance) to 4 mos (enhanced 
surveillance)
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Marrero JA. Hepatology. 2018;68:723-50.



At the next follow up in 4 months: nodule enlarged to 3 cm, now with features of HCC but with onset 
of portal vein infiltration.

Should the patient have access to the model conclusion (already at report collection or only 
accessible upon request)? 

Is the radiologist held more responsible for having taken a discordant (potentially wrong) 
recommendation compared with the past when no AI tools were available?



APPLICABILITY 

In order to work efficiently the AI model should be applied to a population similar to that 
utilized to train and develop the AI.
E.g. (example found in internet) AI detection of skin cancer 

https://ai-derm.com/ Skin cancer is most common
 in Caucasian and most AI are 
trained accordingly.
How does this apply in Asian or 
African or other. The user must 
be adequately be informed?   



APPLICABILITY

In order to work efficiently the AI model should be applied to a population similar to that 
utilized to train and develop the AI.

Which population was utilized to train a possible HCC identification AI model or to build a 
prognostic model? Are the information provided to the operator?
• Only cirrhosis or AASLD criteria? 
• HBV predominant? NASH predominant? Aflatoxin exposure?
• Patients from which geographycal region?
• If model trained on pathology confirmed (usually resected) specimens the patient 

population may favor patient with preserved liver function
• Open question: better to develop on targeted population for training and apply only to the 

same population or have a much larger heterogeneous population 
• Should the degree of certainty expressed based on Applicability?
• Can (or must) the applicability be coded?



APPLICABILITY

63 patients with pathologically characterized HCA and HCC in non-cirrhotic livers

Fractal analysis showed differences between lesion subtypes (multi-class AUC=0.90, p<001)
Sensitivity and specifcity 43% and 47% for qualitative MRI features

96% and 68% when adding fractal analysis.

HCC B-HCA

Michallek Isight Imaging 2022
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SCINTIFICALLY SUCCESFUL RESULTS, BUT….
…can these results be straighforwardly applied in the clinical practice 
where radiologists are faced not only with the differential diagnosis of 

subtypes of HCA or HCC, but other entities may occur (e.g FNH, high flow 
shunt hemangioma, angiomyolipoma, Neuroendocrine tumors, etc)?



AIMS: develop a deep learning system to improve the 
histopathologic diagnosis of HNLs (WD-HCC, HGDN, 
low-grade DN, focal nodular hyperplasia, hepatocellular 
adenoma), and background tissues (nodular cirrhosis, 
normal liver tissue).

METHODS: Four deep neural networks were used. Their 
performances were evaluated by confusion matrix, 
receiver operating characteristic curve, classification 
map, and heat map. The predictive efficiency of the 
optimal model was further verified by comparing with 
that of pathologists.



Performance of deep learning models

The Xception and the Ensemble models both performed the best, 
with an AUC value of 0.9991, indicating models were trained with 
high prediction accuracy. Due to the higher sensitivity and F1 
score, the Ensemble model was our optimal model, named 
HnAIM finally.

Performance of HnAIM in biopsy specimens and 
comparison with pathologists.
For validation purposes, an additional external 
data setwas used to evaluate the diagnostic 
performance of our HnAIM.



WSI-level panoramic classification map of surgical sample

Classification maps were constructed from model’s 

predictions of corresponding patches. 

Colors from blue to red meant different liver lesions. 

For NC, LGDN, HGDN, and WDHCC, gradually 

deepening color even indicated increased degree

of malignancy

Should the patient become aware of the 

suggestions of the AI models? 

Should the classification maps be part of the 

report? 



Issues recommended to be clarified before clinical use of AI tools in diagnosis of 
lesions at risk for HCC
- Mandatory or optional use? (I would prefer optional, at least until it can be verified that all 

conditions allowing their use are met and if the responsbility remains in the radiologist hands 
(he/she has to decide)

- Applicability is highly relevant (to be clarified how to to verify it).
E.g. current patient part of a population similar to the one based on which the tool was 
developed? AI tools should clearly state their limits of applicability (full, partial, not applicable? Or 
express the degree of uncertainty).

- Responsibility of the radiologist? In case of discordance who is responsible. A way to refer 

the case to a third point of view or MDT is to be entitled?



Current main unmet clinical needs in hepatology to which AI could theoretically 

contribute for the daily practice:

➢ Non invasive precise fibrotic staging of chronic liver disease

➢ Non invasive distinction between NAFLD and NASH 

➢ Improved non invasive diagnosis of HCC and of its molecular characterization

➢ Individual precise prediction of the risk of HCC development

➢ Improved histological diagnosis

➢ Prediction of the response of HCC to treatment and risk of recurrence

➢ Identification of complex / rare etiologies of liver lab exam abnormalities

➢ Identification of subphenotypes within current single etiology and corresponding 

natural course of disease and response to treatment



AIMS: evaluate the 
performance of the deep 
learning Radiomics of 
elastography (DLRE) for 
assessing liver fibrosis stages. 

DLRE adopts the radiomic 
strategy for quantitative 
analysis of the heterogeneity 
in two-dimensional shear 
wave elastography (2D-SWE) 

images.



In the training cohort, DLRE had the highest diagnostic 
accuracy compared with all other methods for classifying of 
F4, ≥F3 and ≥F2 (figure 3A–C), and differences of AUCs were 
all statistically significant (p<0.00). 
In the validation cohort, AUCs of DLRE dropped slightly
for the diagnosis of F4 and ≥F3 (figure 3D,E). However, the 
performance of DLRE for ≥F2 became much poorer than it 
was in the training cohort (figure 3F).

In the training cohort, AUCs of DLRE were significantly 
better than those of 2D-SWE in all stratifications. However, 
in the validation cohort, if more than 1 image was 
adopted, DLRE outperformed 2D-SWE in the stratification 
of F4 and ≥F3 (all p<0.01), but it did not offer significantly 
higher AUC for ≥F2.

Overall diagnostic accuracy of DLRE in 

comparison with 2D-SWE, APRI and FIB-4

Diagnostic accuracy versus number of acquisitions: 

intrastrategy and interstrategy comparison of DLRE and 

2D-SWE (i.e. a higher number of elastograms improves accuracy)

F4 vs F0-3 F≥3 vs F0-2 F≥2 vs F0-1

Train
in

g
V

alid
atio

n

Train
in

g
V

alid
atio

n

F4 vs F0-3 F≥3 vs F0-2 F≥2 vs F0-1
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One example among the many.

Chang D et al. Machine learning models are superior to noninvasive tests in identifying 
clinically significant stages of NAFLD and NAFLD-related cirrhosis. Hepatology. 2022 Jul 9. doi: 
10.1002/hep.32655

Histological stages of fibrosis (≥F2, ≥F3, and F4) were predicted using ML (Machine Learning) based on 17 
clinical variables, FibroScan liver stiffness measurements, and Fibrosis-4 index (FIB-4). 
All ML models had primarily higher accuracy and AUC compared with FibroScan, FIB-4, FAST, and NFS. AUC 
versus FibroScan and FIB-4 for ≥F2, ≥F3, and F4 were 0.89 vs. 0.86, 0.85 in one model. Overall, ML models 
performed better in sens, spec, PPV, NPV than traditional noninvasive tests.

These models will have a clinical role if:
Cheaper
More widely applicable
More reproducible among operators and over time
More acceptable by the patients
Preserving the privacy of the patients
Largely more precise in distinguishing different stages than current methods

At present AI models appear already well 
suited for a case finding approach for 
hepatology referral

AI models are not ready be used to assign 
a precise fibrosis stage

AI models increase accuracy to distinguish 
NAFLD from NASH but not to a level 
sufficient for individual diagnosis
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Flowchart of the study

Aims: Patients with HCC displaying overexpression of immune 
gene signatures are likely to be more sensitive to 
immunotherapy.  The aim of the study was, using artificial 
intelligence (AI) on whole-slide digital histological images, to 
develop models able to predict the activation of 6 immune gene 
signatures.

Methods: AI models were trained in patients with HCC treated 
by surgical resection. Three deep learning approaches were 
investigated: patch-based, classic MIL and CLAM. Pathological 
reviewing of the most predictive tissue areas was performed for 
all gene signatures.



- The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under 
the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the 
immune gene signatures ranged from 0.78 to 0.91. 
- The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. 
- Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, 
and neutrophils.

Would this data be enough to choose a specific drug therapy?



Current main unmet clinical needs in hepatology to which AI could theoretically 

contribute for the daily practice:
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➢ Identification of subphenotypes within current single etiology and corresponding 

natural course of disease and response to treatment

Molecular characterization has still limited 
impact. The use is not foreseen in the 
short term but appears very appealing for 
the future (pending identification of 
molecular targeted effective drugs).
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HIGHLIGHTS
-  A new HCC prediction model (PLAN-B) was developed using machine learning algorithms in antiviral-
treated patients with chronic hepatitis B.
-  The utility of the model was validated in independent Korean and Caucasian cohorts.
-  PLAN-B comprises 10 baseline parameters: cirrhosis, age, platelet count, ETV/TDF, sex, serum ALT 
and HBV DNA, albumin and bilirubin levels, and HBeAg status.
-  The PLAN-B model demonstrated satisfactory predictive performance for HCC development and 
outperformed other risk scores.



In this study, they developed 
an AI-based HCC risk 
prediction model for patients 
with CHB receiving a potent 
NA treatment using large-
scale Korean and Caucasian 
cohort datasets. 

The PLAN-B model showed 
satisfactory discriminant 
function (c-index, 0.82), which 
was significantly better than 
other models for both the 
Korean (PAGE-B, modified 
PAGE-B, REACH-B, and CU-
HCC) and Caucasian validation 
cohorts (PAGE-B, REACH-B, 
and CU-HCC).
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AIMS: Standardized and robust risk-stratification systems for 
patients with HCCare required to improve therapeutic strategies 
after curative resection/ablation.

METHODS: two deep-learning algorithms based on whole-slide 
digitized histological slides (WSI) were used to build models for 
predicting survival of patients with HCC treated by resection.. 
The first deep-learning–based algorithm (“SCHMOWDER”) uses 
an attention mechanism on tumoral areas annotated by a 
pathologist whereas the second (“CHOWDER”) does not require 
human expertise.



SCHMOWDER and CHOWDER models can predict 
survival after HCC resection more effectively than all 
other clinical, biological, or pathological variables.

SCHMOWDER and CHOWDER models can predict survival 
after HCC resection, outperforming all other clinical, 
biological, or pathological variables in the validation set 
(TCGA).





Aims: As there is no single highly reliable factor to preoperatively predict microvascular 
invasion (MVI), they developed a computational approach integrating large-scale clinical 
and imaging modalities, especially radiomic features from contrast-enhanced CT, to 
predict MVI and clinical outcomes in patients with HCC.

Methods: In total, 495 surgically resected patients were retrospectively included. MVI-
related radiomic scores (R-scores) were built from 7,260 radiomic features in 6 target 
volumes. Six R-scores, 15 clinical factors, and 12 radiographic scores were integrated into 
a predictive model, the radiographic-radiomic (RR) model, with multivariate logistic 
regression.



.

Lesion segmentation for radiomics analysis

In the multivariate regression model, 8 
predictors were independent prognostic 
factors of histologic MVI. These independently 
associated risk factors were used to form the 
RR model.

Forest plot and nomogram of independent predictors of MVI.



Radiomic features were selected and 
quantitatively integrated into 6 R-scores. 
The related R-scores showed significant 
differences according to MVI status (p 
<0.001). 

The RR model using the predictors achieved 
an area under the curve (AUC) of 0.909 in 
training/validation and 0.889 in the test set.
 
Progression-free survival (PFS) and overall 
survival (OS) were significantly different 
between the RR-predicted MVI-absent and 
MVI-present groups (median PFS: 49.5 vs. 
12.9 months; median OS: 76.3 vs. 47.3 
months). 



Thank you for your kind attention

fabio.piscaglia@unibo.it
Internal Medicine, University of Bologna 


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24: Radiomics VS Deep Learning
	Diapositiva 25: Radiomics VS Deep Learning
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61

