

Salone del Grano

Piazza Giuseppe Garibaldi, 2 Rovigo

PREVENTION OF HEPATIC ENCEPHALOPATHY

Laura Turco, MD PhD

Unità di Medicina Interna per il trattamento delle gravi insufficienze d'organo IRCCS Azienda Ospedaliero-Universitaria di Bologna

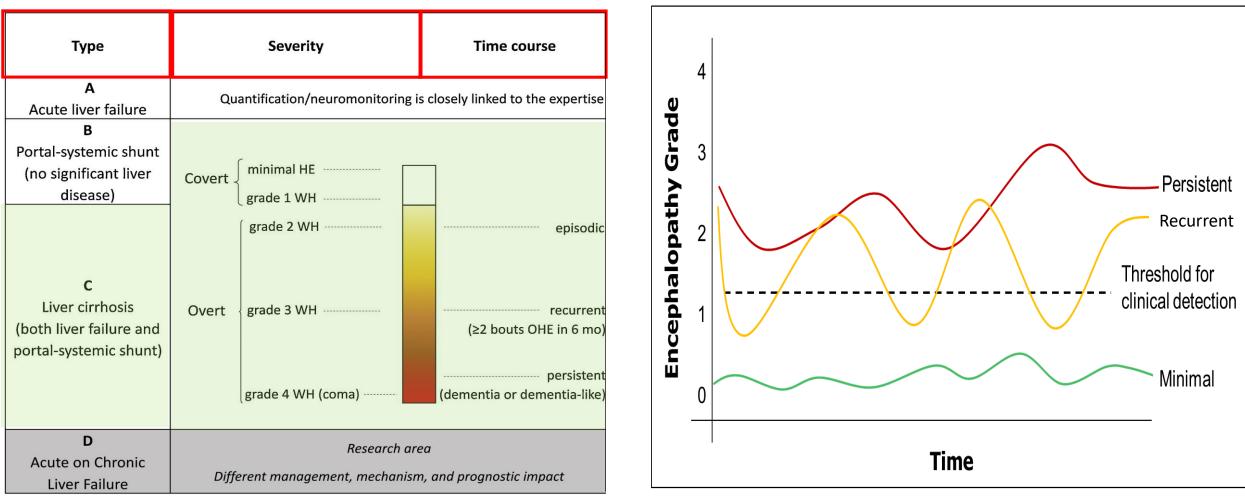
SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

IRCCS Istituto di ricovero e cura a carattere scientifico

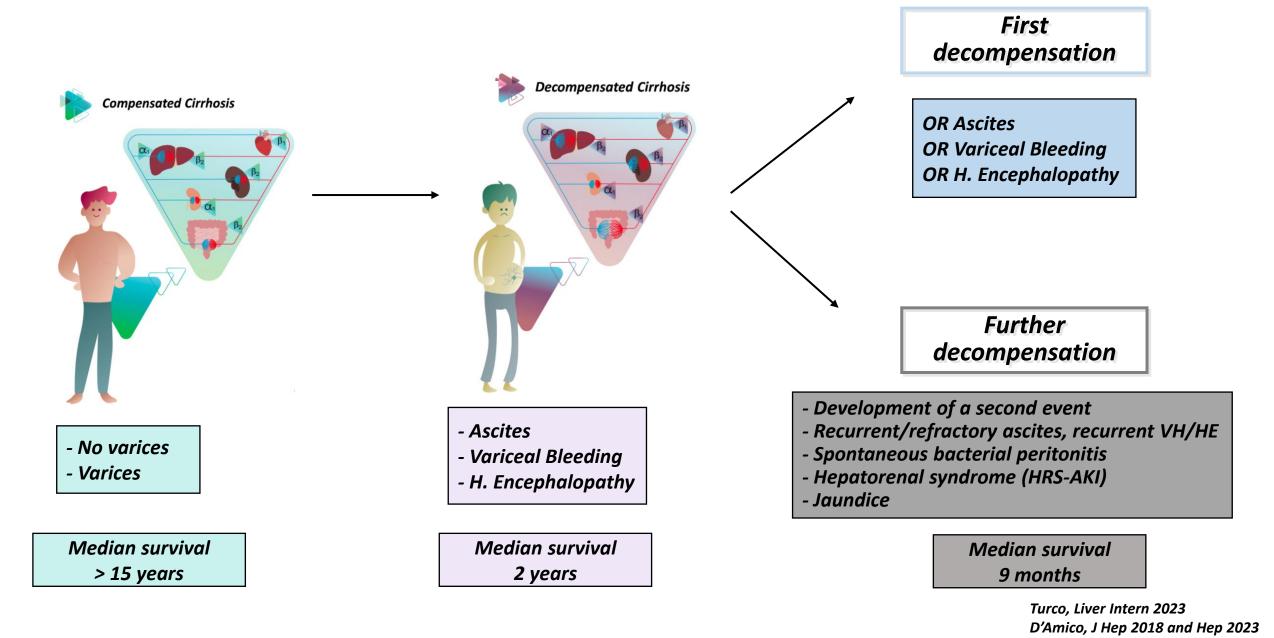
Hepatological Diseases (ERN RARE-LIVER)

Hepatic Encephalopathy: DEFINITION

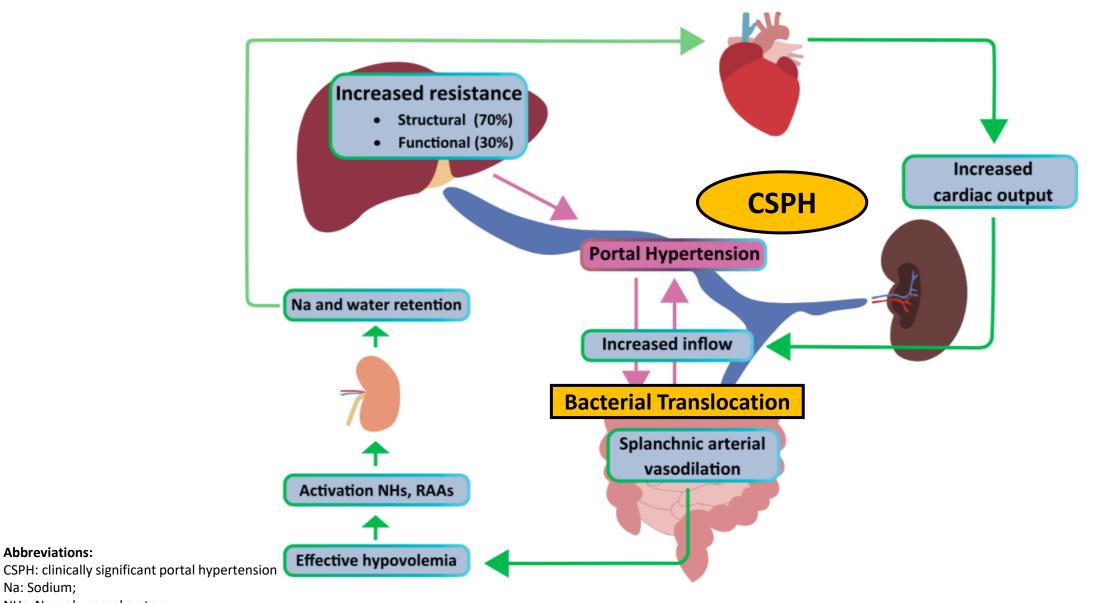
	Contents lists available at ScienceDirect	Digestive and Liver
	Digestive and Liver Disease	Libease
ELSEVIER	journal homepage: www.elsevier.com/locate/dld	Car and a second
Guidelines		
	alopathy 2018: A clinical practice guideline by the ion for the Study of the Liver (AISF)	
Antonio Gasbarrini	^{*,1} , Francesco Paolo Russo ^{b,2} , Piero Amodio ^{a,3} , Patrizia Burra ^{b,3} , ^{c,3} , Carmela Loguercio ^{d,3} , Giulio Marchesini ^{e,3} , Manuela Merli ^{f,3} , Ponziani ^{c,3} , Oliviero Riggio ^{f,3} , Carmelo Scarpignato ^{g,3}	


Brain dysfunction caused by liver failure and/or portal-systemic blood shunting

that produces a spectrum of neurological/psychiatric abnormalities


ranging from subclinical alterations to coma

Hepatic Encephalopathy: CLASSIFICATION


AISF guidelines

Disease progression in patients with cirrhosis

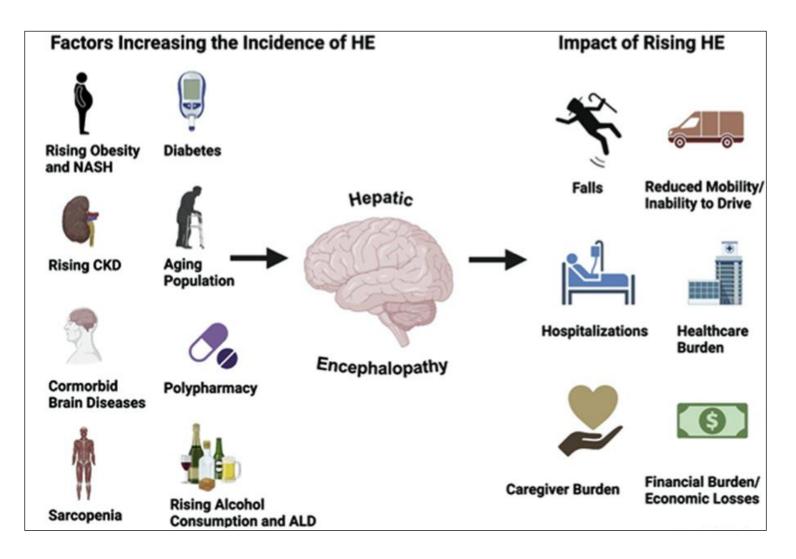
CSPH and **Systemic inflammation** are key factors in the development of <u>HEPATIC ENCEPHALOPATHY</u>

NHs: Neurohumoral system;

Abbreviations:

Na: Sodium;

RAAs: renin-angiotensin- aldosterone system

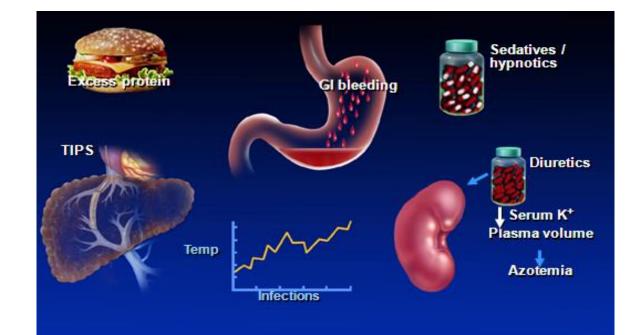

Turco, Liver Intern 2023

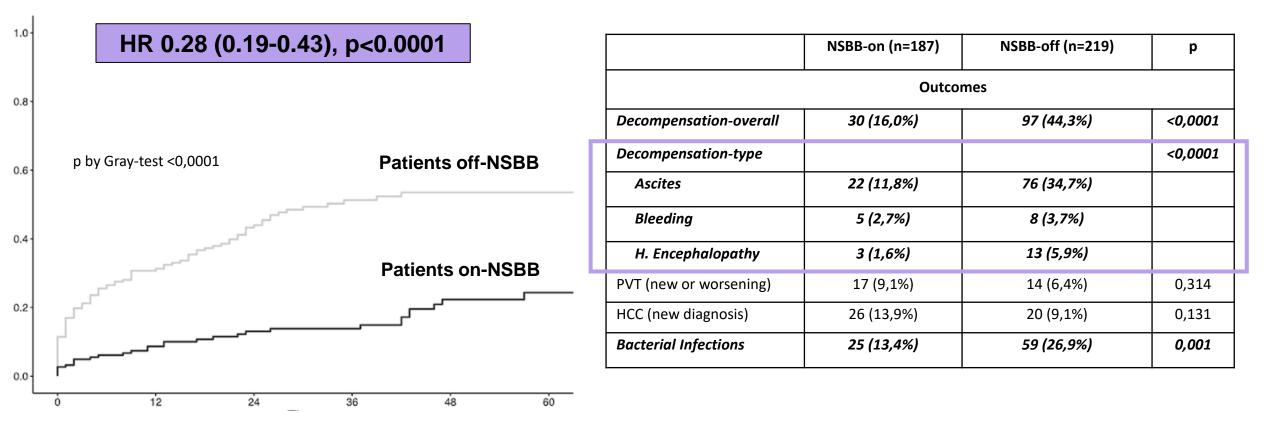
Changing Epidemiology of Cirrhosis and Hepatic Encephalopathy

Jeremy Louissaint,¹ Sasha Deutsch-Link,² and Elliot B. Tapper³

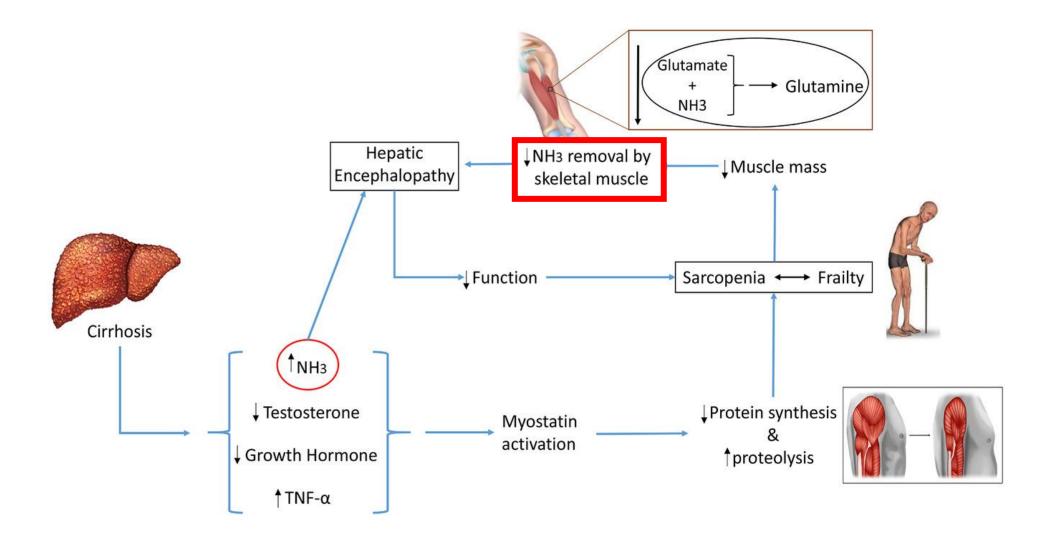
¹Center for Liver Disease and Transplantation, Columbia University, New York, New York; ²Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina; and ³Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan

Primary Prophylaxis of Hepatic Encephalopathy

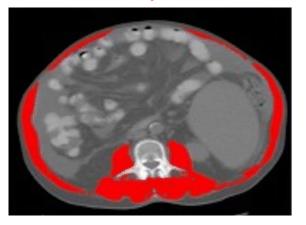

AISF recommendation

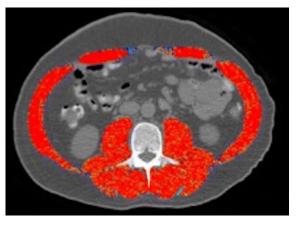

Treatment of HE is not routinely recommended but can be instituted on a case-by-case basis (GRADE II-3, A, 1)

AISF, Dig Liv Dis 2019

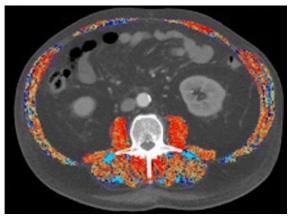

No specific pharmacological interventions are currently recommended, but you can:

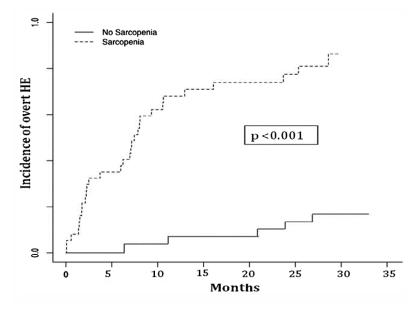
- Educate patient and care-givers on hepatic encephalopathy
- Explain how to avoid constipation
- Provide nutritional counseling


HEPATIC ENCEPHALOPATHY: Relationship with sarcopenia

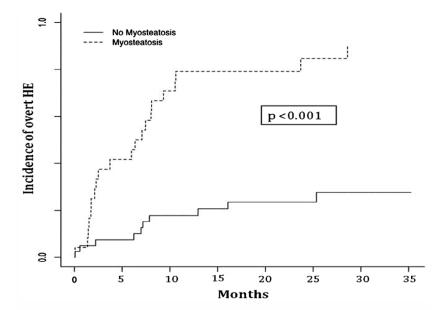

Fallahzadeh MA, Nutr Clin Pract 2021

HEPATIC ENCEPHALOPATHY: IMPACT of sarcopenia


Sarcopenia



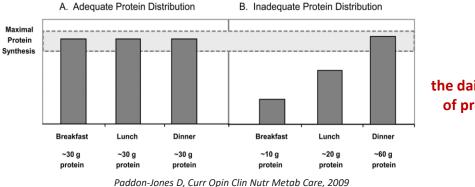
Normal muscle


Myosteatosis

Patients with muscle alterations do worse!

Nardelli et al, Hepatology, 2019

HEPATIC ENCEPHALOPATHY: Practical recommendations for an adequate nutritional intervention


Recommend a daily caloric intake: 35-40 kcal/kg bw

Recommend a daily protein intake: 1.0-1.5 g/kg/bw

Prefer vegetal and dairy sources of protein

• Expected daily caloric intake for a 70 kg patient: 2450-2800 kCal/day

2000 1000 1382.5 P < 0.05 1000 500 Group A Morando et al, Liv Int, 2015 No hyposodic diets, but avoid excessive salt intake!

Check the daily distribution of protein intake!

Aminoacid supplementation (10-20 gr/day), preferably with HMB, can be included

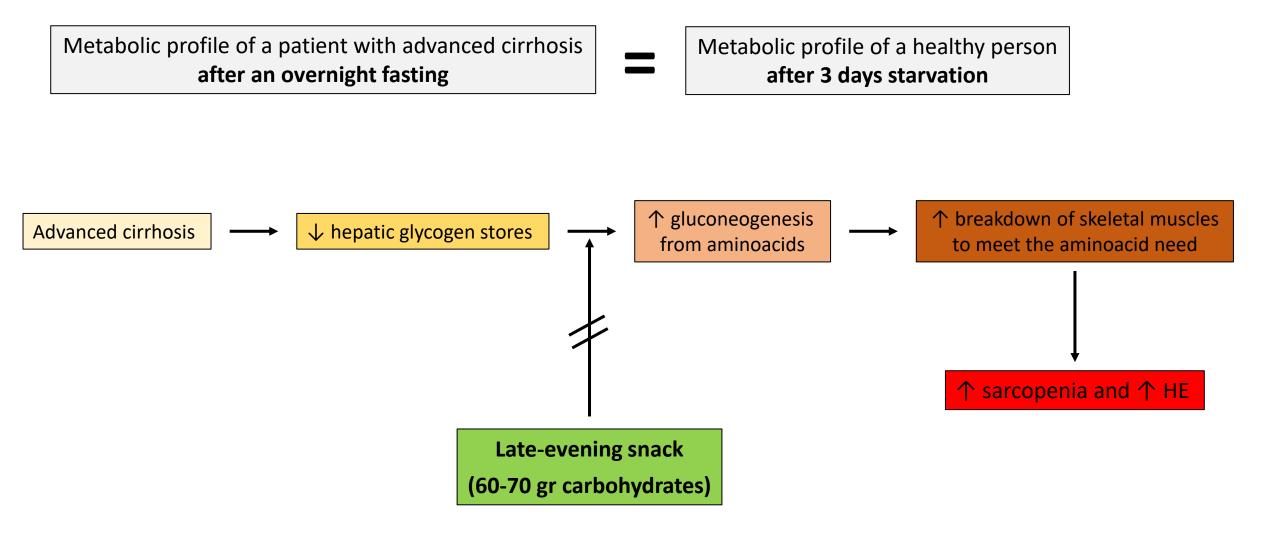
• Micronutrients and vitamin supplementation if deficiency (vitamin D or B1, zinc)

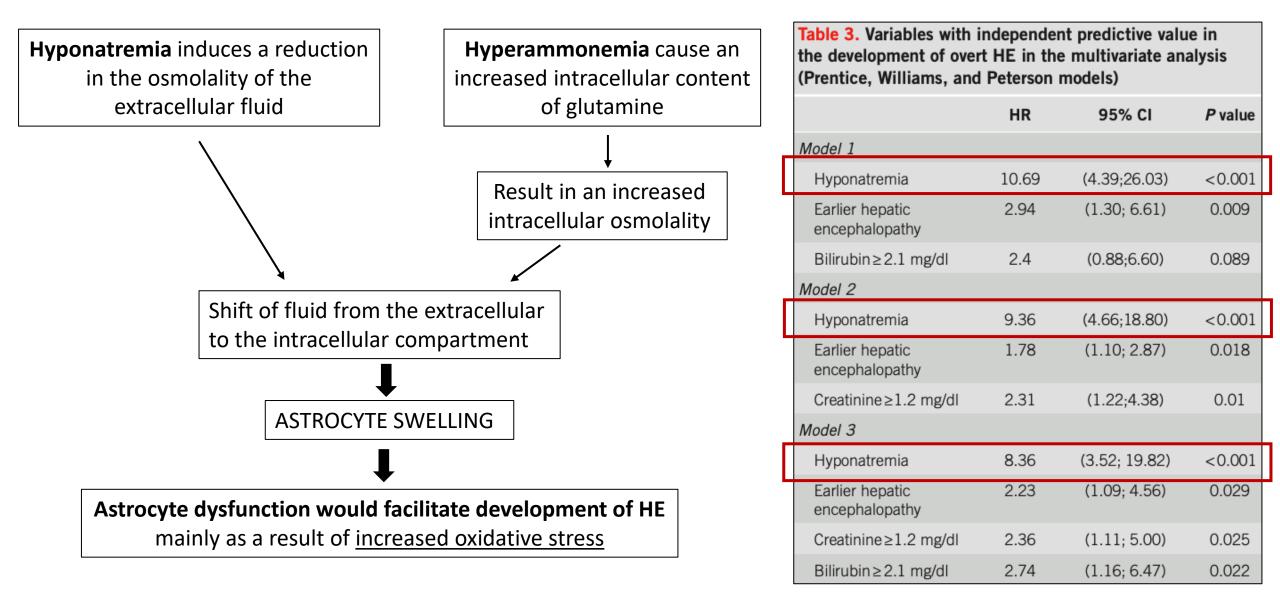
Benefit on ammonia levels

Study	SMD (95% CI) Weight (%
Harima et al.14	-0.289 (-1.118, 0.539) 20.00
Hidaka et al.19	-0.216 (-0.868, 0.436) 32.28
Takeshita et al.18	-0.624 (-1.160, -0.087) 47.72
Overall $(I^2 = 0\%, P = 0.599)$	-0.425 (-0.796, -0.055) 100.00
Over effect ($Z = 2.249, P = 0.024$)	
· _ · · · · · · · · · · · · · ·	1 1
-2 -1 0	1 2
Favors LES	Favors NLES

Benefit on hepatic encephalopathy

	Experim	ental	Cont	rol		Risk ratio		Ris	k ratio	
Study or subgroup	Events	Total	Events	Total	Weight	(%) MH, fixed, 95% C	Year	M-H, 1	ixed, 95% Cl	
Okabayashi <i>et al.</i> (2008)	3	40	12	72	38.4	0.45 (0.13, 1.50)	2008	-+	+	
Takeshita <i>et al.</i> ¹⁸ 2009	0	28	0	28		Not estimable	2009	1		
Nojiri <i>et al.</i> ²⁰ 2017	6	25	14	26	61.6	0.45 (0.20, 0.98)	2017	+		
Total (95% CI)		93		126	100.0	0.45 [0.23, 0.87]		•	•	
Total events	9		26							
Heterogeneity: $X^2 = 0.0$	10, d.f = 1	1(1=	.99); /2	= 0%					+ +	
Test for overall effect Z :	: 2.36 (P	= 0.02)						0.01 0.1 Favors experimenta	1 10 Favors control	100


Recommend a late-evening snack


• 60-70 grams of carbohydrates

٠

Chen CJ et al, J Gastroenterol Hepatol, 2019

HEPATIC ENCEPHALOPATHY: Pathophysiological background of the late-evening snacks

Guevara, AJG 2009

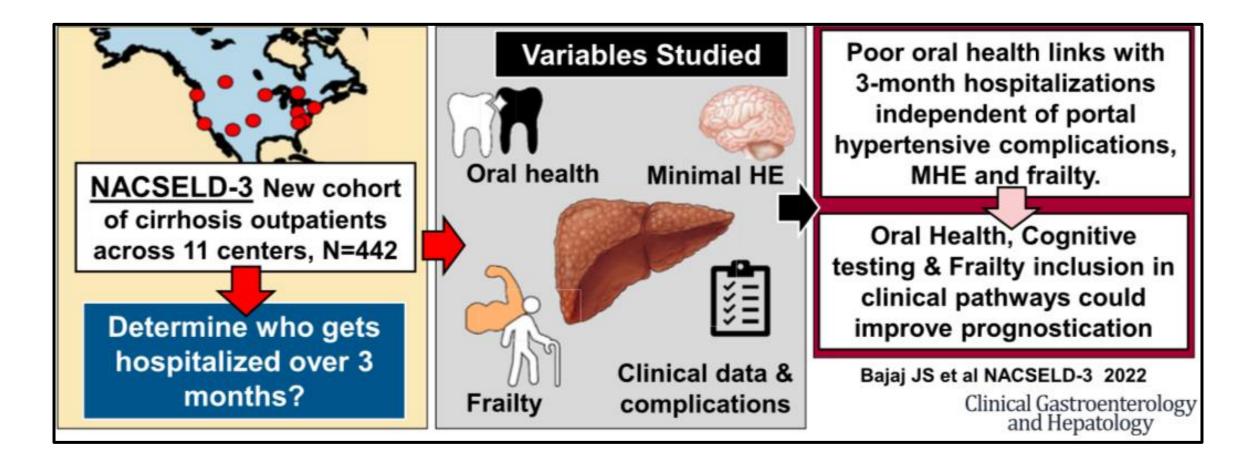
Short-term albumin use leads to HYPONATREMIA resolution in INpatients with decompensated cirrhosis

North America cohort:

-1126 hospitalized cirrhotic patients with hyponatremia (Na<130mmol/L)
-777 patients treated with albumin (total mean amount 225 g).
- Primary indications for albumin were AKI (52%), SBP (15%), post-large volume paracentesis (33%), and hyponatremia (29%)

	Albumin- (<i>n</i> =349)	Albumin+ (<i>n</i> =777)	<i>p</i> -value
Complications of cirrhosis			
Prior ascites	66% (230/347)	85% (658/777)	< 0.0001
Variceal bleed	20% (67/339)	23% (171/760)	0.31
Hyponatremia history	53% (175/329)	64% (476/739)	0.0005
Admit MELD score	18.63 (6.98)	22.84 (7.38)	< 0.0001
Admit CTP score	9.40 (2.15)	10.54 (1.90)	< 0.0001
Admit Na (mmol/L)	129.21 (10.50)	128.66 (4.69)	< 0.0001
Admit creatinine (mg/dL)	1.24 (0.94)	1.74 (1.28)	< 0.0001
Admit MAP (mmHg)	85.09 (13.88)	81.82 (14.00)	0.0001
Admit GFR (MDRD4)	82.65 (45.41)	59.58 (42.41)	< 0.0001
Admit WBC count (/mm ³)	8.5 (6.1)	9.3 (5.9)	0.003
Admit INR	1.70 (0.75)	1.83 (0.67)	< 0.0001
Admit total bilirubin (mg/dL)	6.80 (12.47)	8.22 (9.15)	< 0.0001
Infection on admission	24% (82/347)	35% (269/771)	0.0002
Resolution of hyponatremia	61% (213/347)	69% (537/774)	0.0085

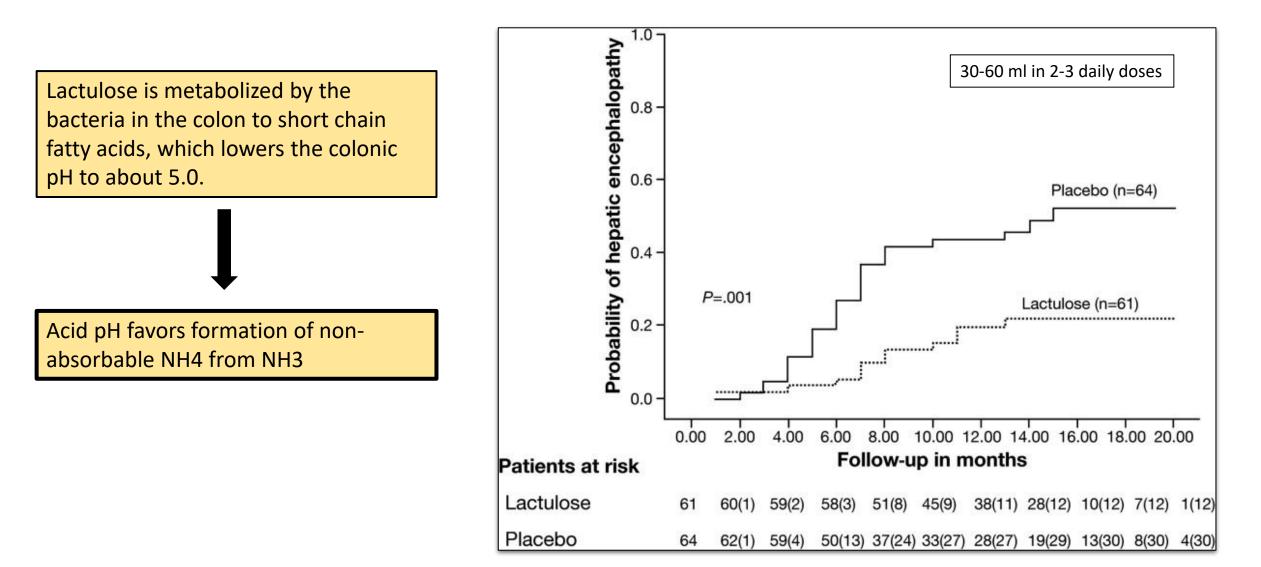
Hyponatremia resolution


Variable	Estimate	Std err	Wald X^2	<i>p</i> -value	OR (95% CI)
Admission Na	0.1149	0.0148	60.51	<0.0001	1.12 (1.09, 1.16)
Admission GFR	-0.0063	0.0015	16.67	<0.0001	0.99 (0.99, 1.00)
Albumin use	0.4063	0.1470	7.64	0.0057	1.50 (1.13, 2.00)

30-days mortality

Variable	Estimate	Std err	Wald X^2	<i>p</i> -value	OR (95% CI)
Age	-0.0218	0.0096	5.19	0.0227	0.978 (0.960, 0.997)
Admission GFR	0.0065	0.0027	5.89	0.0153	1.007 (1.001, 1.012)
NACSELD- ACLF	-1.8470	0.2192	70.98	<0.0001	0.158 (0.103, 0.242)
Resolution of hyponatremia	0.4021	0.2016	3.98	0.042	1.495 (1.017, 2.219)

Bajaj, AJG 2018

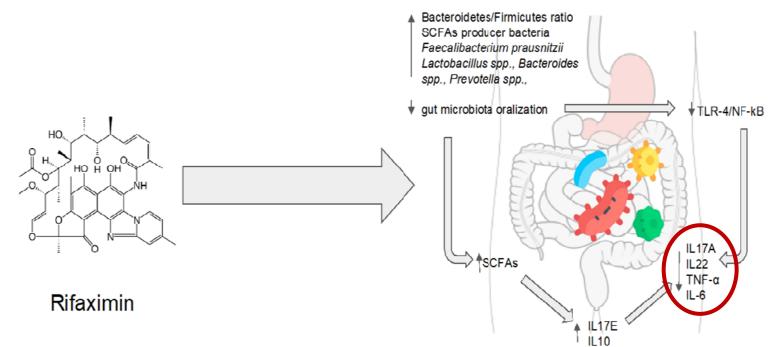

Periodontitis as an indipendent prognostic factor in patients with decompensated cirrhosis

Periodontitis OR 3.68; 95% CI, 1.36–10; P < 0.01

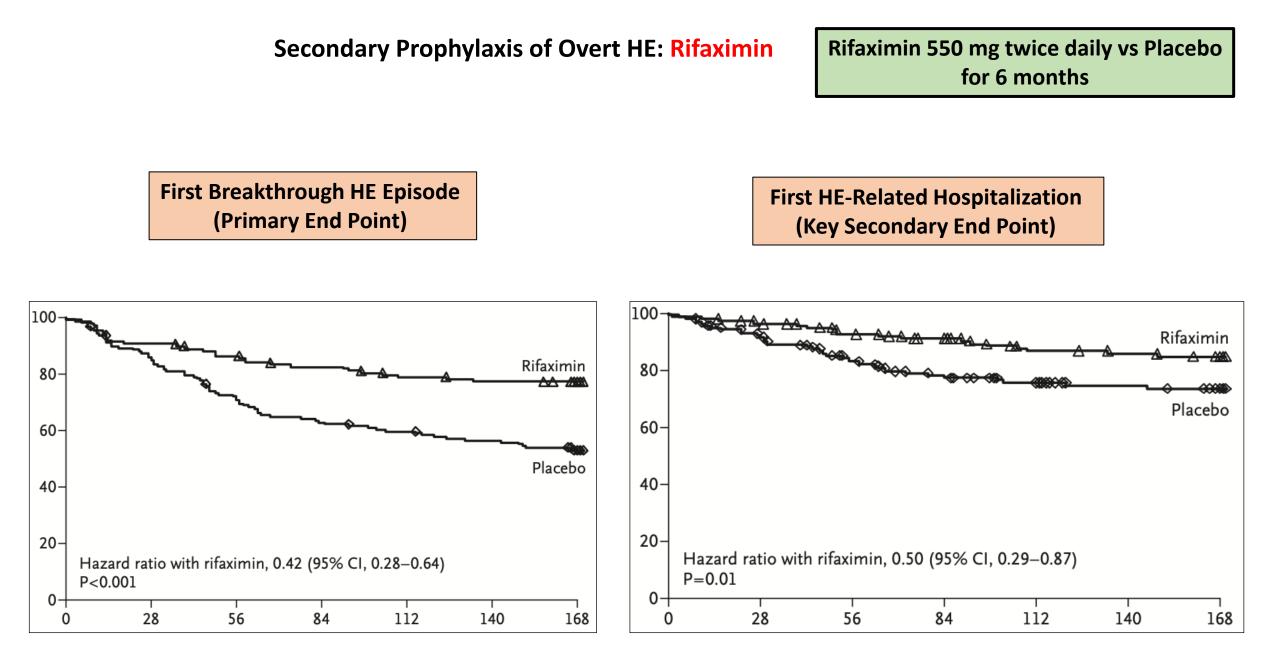
Secondary Prophylaxis of Hepatic Encephalopathy

Secondary Prophylaxis of Overt HE: Lactulose

Sharma et al. Gastroenterology 2009


Secondary Prophylaxis of Overt HE: Rifaximin

Rifaximin Treatment in Hepatic Encephalopathy


Nathan M. Bass, M.B., Ch.B., Ph.D., Kevin D. Mullen, M.D., Arun Sanyal, M.D., Fred Poordad, M.D., Guy Neff, M.D., Carroll B. Leevy, M.D.,* Samuel Sigal, M.D., Muhammad Y. Sheikh, M.D., Kimberly Beavers, M.D., Todd Frederick, M.D., Lewis Teperman, M.D., Donald Hillebrand, M.D., Shirley Huang, M.S., Kunal Merchant, Ph.D., Audrey Shaw, Ph.D., Enoch Bortey, Ph.D., and William P. Forbes, Pharm.D.

Microbiota modulation by Rifaximin

Figure 2. Rifaximin's eubiotic effects. IL17A: interleukin 17A; IL22: interleukin 22; TNF- α : tumor necrosis factor alpha; IL-6: interleukin 6; IL10: interleukin 10; IL17E: interleukin 17E.

Bass et al. NEJM 2010 Airola et al. Antibiotics 2023

Secondary Prophylaxis of Overt HE: AISF reccomendation

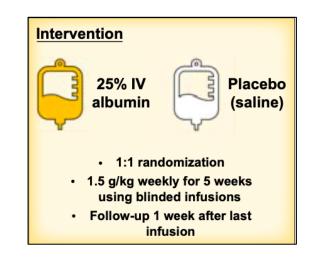
AISF recommendations

- Non-absorbable disaccharides represent the first-choice treatment for the secondary prophylaxis of overt HE, at a dose that guarantees 2/3 soft stools per day. PEC may represent an alternative for patients who are intolerant to non-absorbable disaccharides
- **Rifaximin** (550 mg twice daily or 400 mg three times daily should be added to non-absorbable disaccharides in patients with recurrent OHE (i.e. those who have developed a second episode of overt HE within 6 months of the first one)
- Rifaximin may be used as first-line agent for the secondary prophylaxis of overt HE in patients who are truly intolerant to non-absorbable disaccharides, after their tapering has been tested and shown not to be beneficial

AISF, Dig Liv Dis 2019

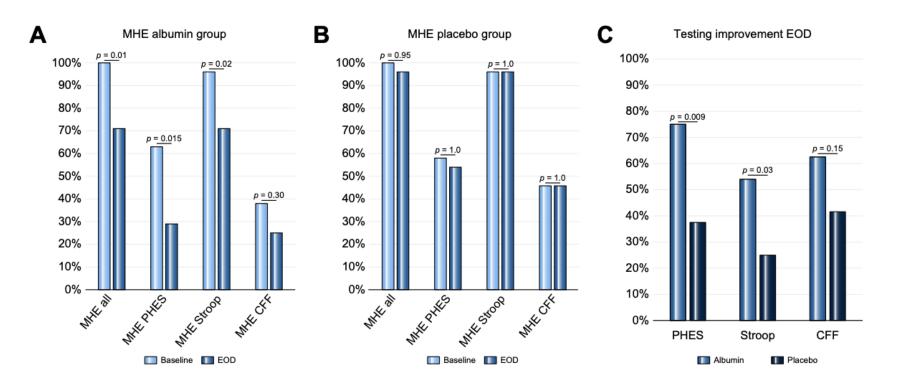
HEAL study: A double-blind randomized placebo-controlled trial of albumin in OUTpatients with hepatic encephalopathy

Problem:


Even after recovery from clinically evident episodes of HE, most patients experience minimal hepatic encephalopathy (MHE) despite maximal therapy (Rifaximin+Lactulose)

Evidences:

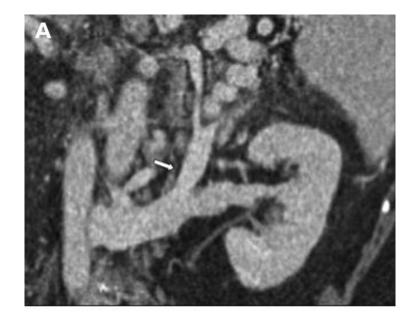
1) Persistent cognitive impairment is accompanied by a sustained pro-inflammatory and endothelial dysfunctional state that is not quenched by current standard of care.

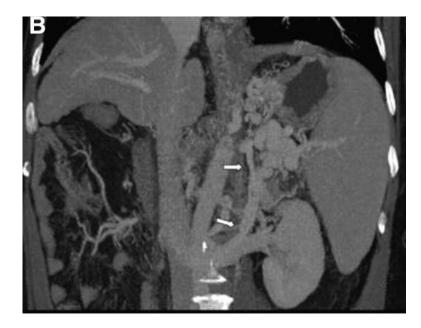

2) Albumin can bind metabolites that precipitate HE in individuals with advanced cirrhosis

Outcomes

Primary: Cognitive performance

Secondary:
Quality of life
Inflammatory cytokines
Endothelial dysfunction

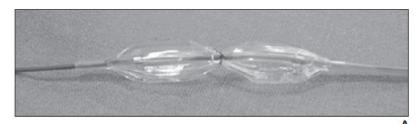

	Placebo baseline	Placebo EOD	Placebo EOS	Albumin baseline	Albumin EOD	Albumin EOS
IL-1β (pg/ml)	0.53 ± 0.57	0.50 ± 0.47	0.47 ± 0.50	0.42 ± 0.39	0.37 ± 0.29*	0.35 ± 0.37*
IL-6 (рg/ml)	3.01 ± 2.07	3.80 ± 2.23	4.94 ± 1.52	3.71 ± 2.56	3.91 ± 2.61	3.18 ± 1./3
TNFα (pg/ml)	15.55 ± 8.34	15.09 ± 6.23	16.88 ± 7.32	16.34 ± 14.46	14.46 ± 7.06	15.06 ± 7.94
IL-10 (pg/ml)	3.69 ± 3.09	2.93 ± 3.17*	3.08 ± 3.02*	4.01 ± 4.07	3.83 ± 2.96	3.28 ± 1.81
LBP (ng/ml)	1,784.9 ± 1,557.3	1,714.8 ± 1,255.5	1,931.2 ± 316.7	1,651.1 ± 952.1	1,669.8 ± 1,010.4	1,659.7 ± 931.6
ICAM-1 (ng/ml)	298 1 + 97 1	3/16 + 118 8*	3/3 6 + 125 9*	316.7 ± 140.3	271 1 + 134 1* [†]	313.1 ± 125.6
ADMA (µM)	0.65 ± 0.12	0.72 ± 0.13*	0.65 ± 0.14	0.69 ± 0.13	$0.63 \pm 0.09^{*},^{\dagger}$	0.63 ± 0.10*
IMA (IU/mi)	831.7 ± 1,335.6	997.2 ± 1,529.3*	$1,604.9 \pm 3,082.3^{\circ}$	$1,491.5 \pm 3,125.9$	1,144.1 ± 2,812.6°	$1,042.9 \pm 2,753.9^{\circ}$


PERSISTENT OR HIGHLY RECURRENT HEPATIC ENCEPHALOPATHY: Consider SHUNT reduction

AISF recommendations

- In patients with persistent or highly recurrent HE spontaneous portal-systemic shunts should be sought for by Doppler ultrasound and, should this be negative, by angio-CT abdomen (GRADE III, A, 1)
- Persistent or highly recurrent OHE is an indication for interventional shunt reduction/obliteration (GRADE II-3, A, 1)

AISF, Dig Liv Dis 2019

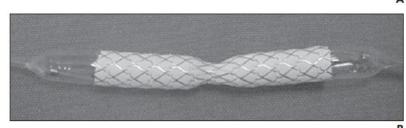
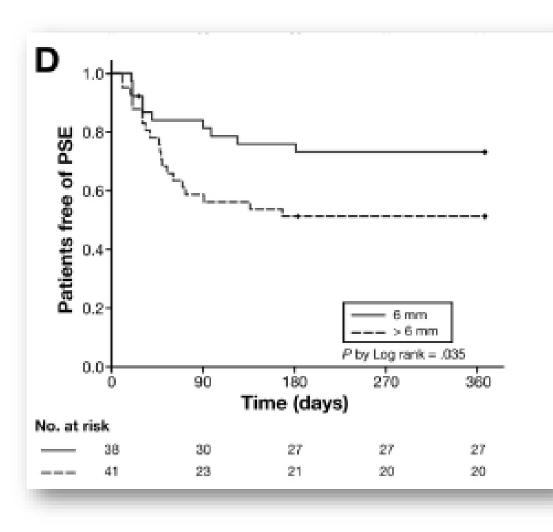


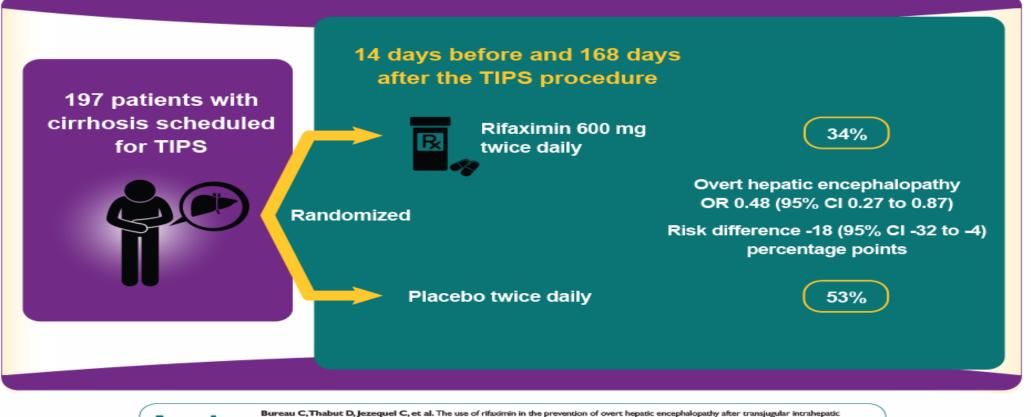
Prophylaxis of Hepatic Encephalopathy after TIPS

Under-dilated TIPS Associate With Efficacy and Reduced Encephalopathy in a Prospective, Non-randomized Study of Patients With Cirrhosis

Filippo Schepis,^{*,a} Francesco Vizzutti,^{‡,a} Guadalupe Garcia-Tsao,^{*,§} Guido Marzocchi,^{||} Luigi Rega,[¶] Nicola De Maria,^{*} Tommaso Di Maira,^{*} Stefano Gitto,^{*} Cristian Caporali,^{||} Stefano Colopi,^{||} Mario De Santis,^{||} Umberto Arena,[‡] Antonio Rampoldi,[#] Aldo Airoldi,^{**} Alessandro Cannavale,^{‡‡} Fabrizio Fanelli,^{‡‡} Cristina Mosconi,^{§§,|||} Matteo Renzulli,^{§§,|||} Roberto Agazzi,^{¶¶} Roberto Nani,^{¶¶} Pietro Quaretti,^{##} Ilaria Fiorina,^{##} Lorenzo Moramarco,[†] Roberto Miraglia,^{***} Angelo Luca,^{***} Raffaele Bruno,^{‡‡‡} Stefano Fagiuoli,^{§§§} Rita Golfieri,^{§§} Pietro Torricelli,^{||} Fabrizio Di Benedetto,^{|||||} Luca Saverio Belli,^{**} Federico Banchelli,^{¶¶¶} Giacomo Laffi,[‡] Fabio Marra,^{‡,###} and Erica Villa^{*}

Stent-Graft for Hepatic Encephalopathy


Fig. 1—Materials used for reduction of transjugular intrahepatic portosystemic shunt. A, Photograph shows 3–0 absorbable suture line tied in middle of 10 × 40 mm balloon for expansion of two ends of stent but not central portion. Balloon is inflated with saline solution to verify correct position of suture line.

B, Photograph shows large (diameter, 6–12 mm; length, 38 mm) hourglass-shaped balloon-expandable expanded polytetrafluoroethylene stent-graft manually crimped on balloon catheter. When balloon is completely dilated, proximal and distal ends of stent-graft are fully expanded up to 10 mm, and central portion of stent-graft is only partially dilated, producing hourglass shape. However, middle portion of stent-graft should be progressively dilatated with larger balloon according to patient's clinical condition.

Rifaximin reduces the risk of Post-TIPS Hepatic Encephalopathy

Does rifaximin reduce hepatic encephalopathy after transjugular intrahepatic portosystemic shunt (TIPS) compared with placebo?

Bureau C, Thabut D, Jezequel C, et al. The use of rifaximin in the prevention of overt hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. A randomized controlled trial. Ann Intern Med. 2 February 2021. [Epub ahead of print]. doi:10.7326/M20-0202 http://acpjournals.org/doi/10.7326/M20-0202

Annais

© 2021 American College of Physicians

BRIEF REPORT

Combined Spontaneous Portosystemic

Shunt Embolization and Transjugular Intrahepatic Portosystemic Shunt **Creation for Treatment of Hepatic** Encephalopathy

Rajangad S. Gurtatta, BS, Ron C. Gaba, MD, MS, and Josi L. Herren, DO

Table 3. Spontaneous Portosystemic Shunt Embolization and Transjugular Intrahepatic Portosystemic Shunt Creation Clinical Outcomes

Measure	Before the procedures	After the procedures	P value
HE	8/8 (100%)	3/8 (37.5%)	.026
HE severity			.010
Overt (WH Grades 2–4)	7 (87.5%)	1 (12.5%)	
Covert (WH Grade 1)	1 (12.5%)	7 (87.5%)	
90-d HE hospitalizations (mean)	3 (37.5%)	1 (12.5%)	.569

RESEARCH HIGHLIGHTS

- In 8 patient with refractory hepatic encephalopathy related to cirrhosis and spontaneous portosystemic shunts, transjugular intrahepatic portosystemic shunts were created and the spontaneous shunts were embolized.
- Seven patients exhibited improvement in encephalopathy, and none developed new complications of ascites.

