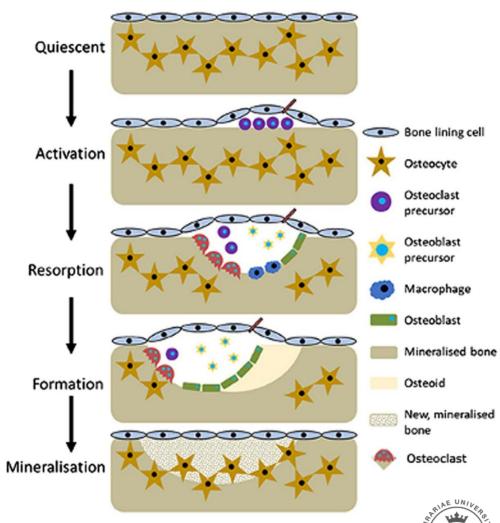


Con il Patrocinio di:


UPDATE SULLA GESTIONE DEL RISCHIO DI FRATTURA

Marcatori e ormoni dell'osso: aspetti clinici

Relatore: Alberto Gobbo

Bone Turnover Markers (BTM)-Remodeling

- ~10⁶ unità di rimodellamento osseo nello scheletro adulto
- Sequenza ordinata (*coupling*): riassorbimento
 → formazione
- Gli osteoclasti dissolvono la matrice ossea con l'acido, rilasciando enzimi (TRACP5b) e producendo frammenti di collagene di tipo I (CTX e NTX)
- Gli osteoblasti producono nuova matrice rilasciando proteine o frammenti di proteine (PINP) ed enzimi (BAP)

Università deali Studi

Bone Turnover Markers (BTM)-Overview

Permettono di studiare l'attività osteoblastica e osteoclastica a livello dell'intero organismo

Markers di riassorbimento

- Prodotti di degradazione del collagene tipo I
 - o CTX
 - \circ NTX
 - Piridinolina e Desossipiridinolina
- Enzimi
 - TRAP5b (fosfatasi acida tartrato resistente 5b)

Markers di osteoformazione

- Proteine di matrice
 - PINP (N-propeptide del procollagene I)
 - Osteocalcina
- Enzimi
 - o BAP

Bone Turnover Markers (BTM)-Overview

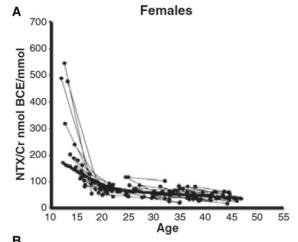
Permettono di studiare l'attività osteoblastica e osteoclastica a livello dell'intero organismo

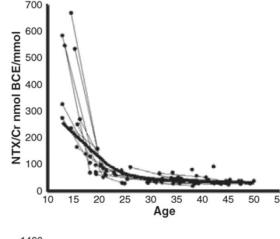
Markers di riassorbimento

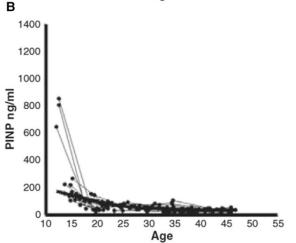
- Prodotti di degradazione del collagene tipo I
 - o CTX
 - \circ $\overline{\mathsf{NTX}}$
 - Piridinolina e Desossipiridinolina
- Enzimi
 - TRAP5b fosfatasi acida tartrato resistente 5b)

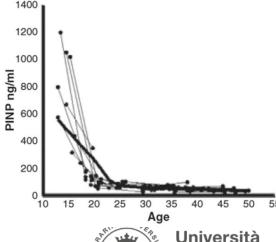
Markers di osteoformazione

- Proteine di matrice
 PINP (N-propeptide del procollagene I)
 Osteocalcina
- Enzimi
 o BAP

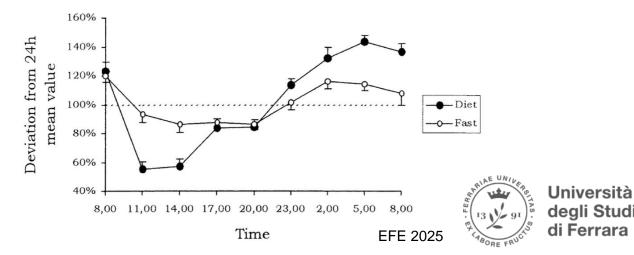

Osteoporosi (IOF e IFCC)




Età

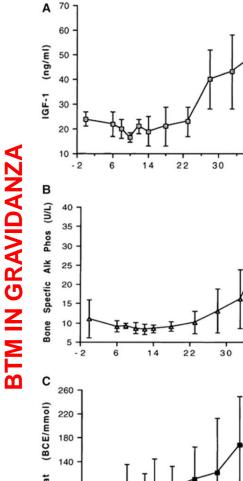

- I BTM sono più elevati nell'infanzia e adolescenza con <u>picco durante la pubertà</u> e successivo decremento
- Anche se i BTM riflettono la crescita scheletrica, non sono in grado di predire la BMD né il contenuto minerale osseo nei giovani
- Terminata la crescita lineare, nell'adulto si raggiunge un equilibrio tra riassorbimento e osteoformazione ed i BTM riflettono il picco di massa ossea ottenuto
- I livelli di BTM raggiungono il nadir alla 4° decade e rimangono stabili, seguendo i livelli di ormoni sessuali

Males


Dieta

- L'assunzione di cibo riduce in modo significativo i livelli di CTX ma anche PINP, OC e uNTX
- È consigliabile effettuare il prelievo a digiuno
- L'integrazione di calcio e vitamina D riduce principalmente i livelli di CTX
- L'integrazione di vitamina K riduce i livelli di OC decarbossilata
- La dieta vegana sembra associata ad un aumento di BAP e PINP

Ritmo circadiano


- I CTX mostrano un picco notturno ed un nadir tra le 11:00 e le 15:00 con importante variabilità
- Gli altri marker presentano ritmi circadiani con minor variabilità (PINP meno variabile di tutti)
- È consigliabile effettuare il prelievo al mattino prima delle 10:00

s-CTx; Fasting study

Genere

- Uomo: il picco puberale di BTM ed il nadir avvengono più tardivamente, pertanto i livelli di BTM si mantengono più elevati rispetto alla donna per tutta la vita adulta prima della menopausa (in relazione alla maggior massa ossea)
- Menopausa: aumentano le unità di rimodellamento osseo con prevalenza dell'attività di riassorbimento su quella di apposizione: i BTM risultano più elevati degli uomini di pari età
- Ciclo mestruale: in fase follicolare sono stati riportati lievi aumenti di BAP, CTX e uNTX non significativi
- Gravidanza: i marker di riassorbimento aumentano progressivamente dalla 14° SG e la BAP aumenta dalla 36° SG

Weeks

Fratture

- Il processo di riparazione di una frattura comporta attività di riassorbimento e formazione con incremento dei BTM
- I marker di riassorbimento aumentano precocemente: picco di CTX a 2 sett, uNTX a 6 sett, TRAP5b 12 sett
- I marker di formazione aumentano più tardivamente: BAP 2-4 sett, PINP 6 sett, OC 26 sett
- In fratture maggiori (anca, polso) i BTM tornano normali dopo 1 anno
- Da considerare anche: dimensioni dell'osso fratturato, dimensioni della superficie di frattura, interventi chirurgici e immobilizzazione

Esercizio fisico

- L'esercizio fisico può influenzare i BTM ma con risposte molto variabili tra i vari marker ed in base al tipo di esercizio, intensità, durata, al sesso ed età
- Data la difficoltà a valutare l'impatto, si sconsiglia l'esecuzione di esercizio fisico nelle 24 ore precedenti al prelievo

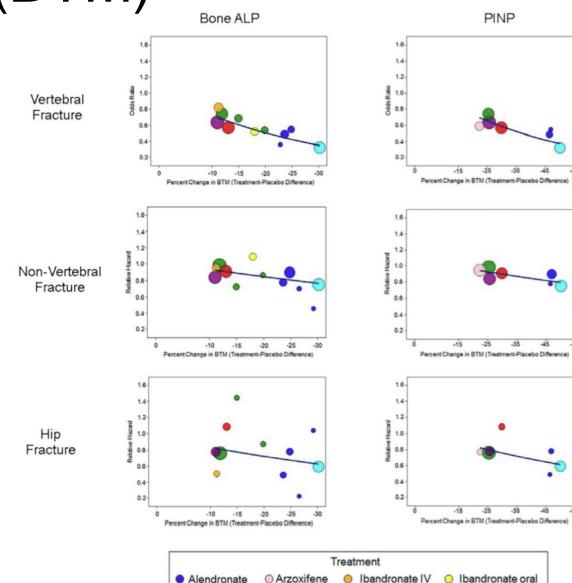
Immobilizzazione acuta/cronica

- In acuto aumento repentino del riassorbimento osseo indipendentemente dall'età
- In cronico (allettamento, viaggi spaziali) aumento sostenuto dei marker di riassorbimento mentre i marker di formazione rimangono stabili o lievemente aumentati

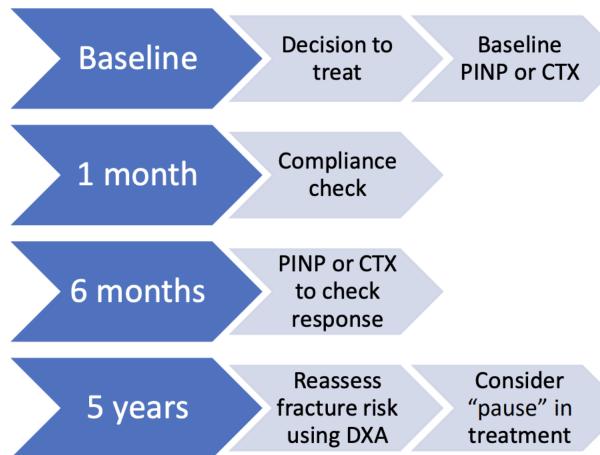
Bone Turnover Markers (BTM)Tips Recommenda

	Effect	Recommendation	Importan			
Controllable sources						
Circadian rhythm ¹⁷	High concentrations of bone resorption markers at night; lowest concentrations in the afternoon	Collect samples for bone resorption markers between 0730 h and 1000 h after an overnight fast	High			
Food intake ¹⁸	Decrease in bone resorption markers after breakfast (about 50%)	Take samples for bone resorption markers after overnight fast	High			
Menstrual cycle	Bone resorption lower during luteal phase	Take samples during follicular phase	Low			
Seasonal	Higher bone turnover marker concentrations during winter, but small effect	For research, take samples during the same season	Low			
Exercise	Intense exercise might increase bone formation and decrease bone resorption	Avoid intense exercise the day before sampling	Low			
Lifestyle	Smoking increases and alcohol consumption decreases bone turnover marker concentrations	Avoid excessive alcohol consumption before sampling; no specific recommendations for smoking				
Uncontrollable source	s					
Age ¹⁹⁻²¹	Bone turnover marker concentrations are highest in infants, high during childhood (especially puberty), lowest during the fourth decade of life in women, and lowest during the fifth decade of life in men	Use age-based reference intervals; during puberty, base on pubertal stage				
Sex ^{21,22}	Young men (<35 years) have higher bone turnover marker concentrations than do young women; postmenopausal women have higher bone turnover marker concentrations than do men of a similar age	Use sex-specific reference intervals	High			
Menopause	Bone turnover marker concentrations increase around the time of the final menstrual period	Use reference intervals based on menopausal status	Moderate			
Pregnancy and lactation	Bone turnover markers are increased to 2–3 times vs prepregnancy, especially during the third trimester of pregnancy and during lactation	Take stage of pregnancy into account in interpretation	Moderate			
Geographical location and ethnic origin	Within an ethnic group, geographical differences are small and related to differences in lifestyle, such as bodyweight; data are scarce and discordant	Pay attention to lifestyle factors; insufficient data to decide whether reference values should be obtained separately for different ethnic groups	Low			

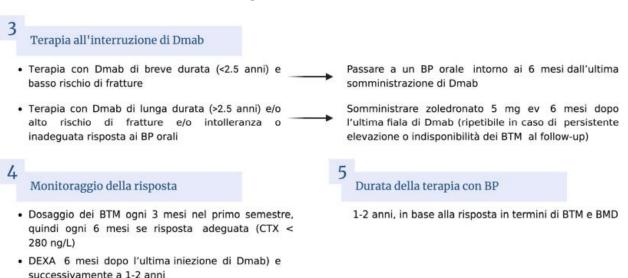
Bone Turnover Markers (BTM)-Farmaci interferenti

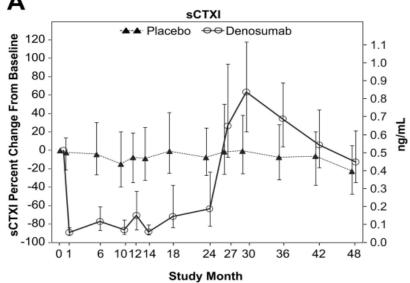

Farmaci	Markers di riassorbimento	Markers di osteoformazione				
Contraccezione orale combinata	↓ uNTX					
Contraccezione con solo progestinici	û uNTX	û OC, PINP				
Antiepilettici	û uNTX, CTX	ŷ OC, BAP				
Anti-estrogeniInibitori dell'aromatasitamoxifene	û uNTX, CTX ⇩ uNTX, CTX	û PINP, BAP ↓PINP, BAP				
Terapia di deprivazione androgenica	û uNTX, CTX	û PINP, BAP, OC				

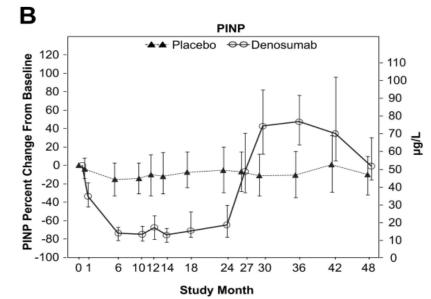
Bone Turnover Markers (BTM)-Pratica clinica


Osteoporosi

- I BTM valutati al basale:
 - non predicono con accuratezza la perdita di massa ossea (BMT elevati identificano solo il 40-55% dei «fast losers»)
 - al momento non predicono il rischio di frattura (pochi studi, associazioni modeste, principalmente popolazioni femminili)
 - non predicono la risposta al trattamento antiosteoporotico (scelta della terapia?)
- Cambiamenti dei livelli di BAP e PINP (ma non di CTX e uNTX) durante la terapia antiriassorbitiva sembra predirre l'efficacia antifratturaturativa soltanto per fratture vertebrali

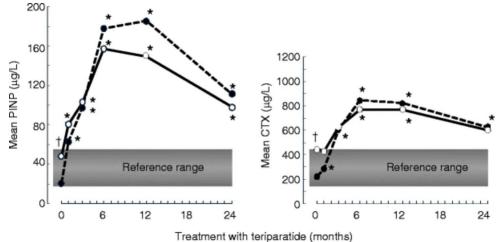

Bisfosfonati (BF)

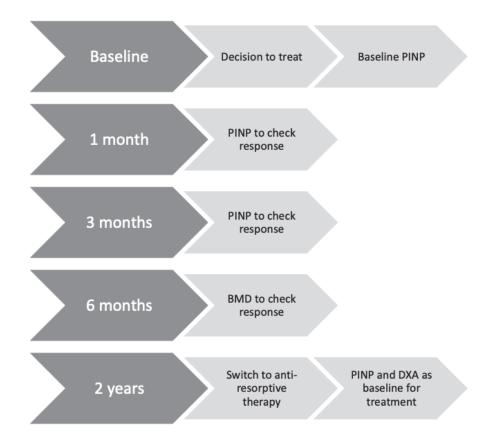

- I BTM possono essere usati per monitorare la terapia con BF (responders vs. non-responders):
 - \circ Δ_{BTM} > Least Significant Change (Δ_{PINP} >10 μg/L; Δ_{CTX} >100 ng/L)
 - Confronto BTM con la media di riferimento di donne giovani in premenopausa (PINP <35 μg/L; CTX < 280 ng/L)
- Se non-responders → valutare compliance, osteoporosi secondarie, malassorbimento
- Con i BTM si possono monitorare le vacanze terapeutiche da BF



Denosumab (DMB)

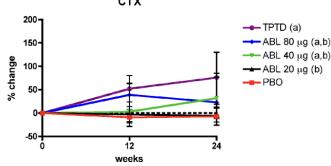
- Alla sospensione di DMB i BTM mostrano un rialzo rapido, importante e duraturo (circa 2 anni) con perdita di BMD e aumento del rischio di fratture vertebrali
- Il monitoraggio dei BTM è utile per valutare la risposta alla terapia con BF in seguito a sospensione di DMB

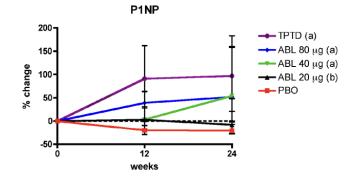


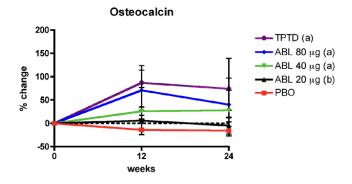


Teriparatide (TPTD)

- PINP si è dimostrato il BTM più accurato nel monitoraggio della terapia anabolizzante con TPTD
- Considerare eventuali pretrattamenti con BF

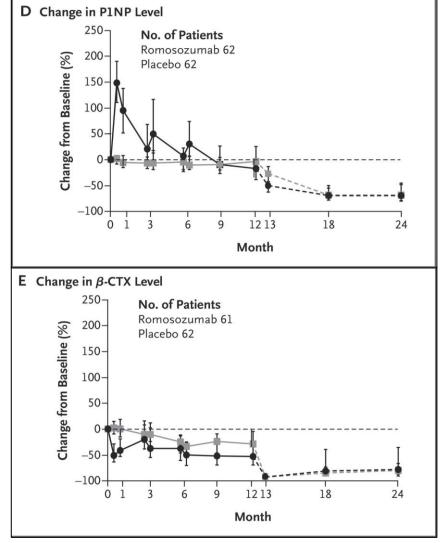

• Buona risposta se Δ_{PINP} >10 µg/L + PINP> 69 µg/L





Abaloparatide

- Interagisce con il recettore del PTH in modo differente da TPTD
- Aumento di PINP e OC senza modificare i CTX



Bone Turnover Markers (BTM)-Bone targeting agents D Change in PINP Level

Romosozumab

- Stimola formazione ossea e inibisce riassorbimento
- PINP aumenta nei primi 14 giorni e raggiunge il baseline in 9 mesi
- CTX cala nei primi 14 giorni e si mantiene ridotto
- Non esistono raccomandazioni ufficiali per il monitoraggio con BTM

Bone Turnover Markers (BTM)Pratica clinica

Osteoporosi associata a malattia renale cronica (CKD-MBD)

- Sottotipi di CKD-MBD a turnover ridotto o aumentato
- IperPTH secondario ma con resistenza scheletrica al PTH → livelli di iPTH compresi tra 2-9 volte il ULN non riflettono il turnover osseo
- BAP, PINP intatto (trimerico), TRAP5b non sono influenzati da CKD
- Livelli molto variabili di CTX, NTX, OC (si accumulano in CKD avanzata e calano rapidamente dopo sessione dialitica)
- I BTM (in particolare BAP) possono aiutare ad escludere forme a basso/alto turnover in modo non-invasivo (20 ug/L, NPV= 96%)

ROD subtype	Turnover	Mineralization			
Osteitis fibrosa	High	Normal			
Mixed bone disease	High	Abnormal			
Adynamic bone disease (ABD)	Low	Normal			
Osteomalacia	Low	Abnormal			

Biomarkers	Study	Population, sample size	AUC*	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Optimum cutoff leve
iPTH	Sprague et al 2016 (507)	HD, N=450	0.70					104 ng/L
	Salam et al 2018 (105)	CKD 4-5D, $N = 43$	0.56	70	53	32	85	183 ng/L
	Nickolas et al 2020 (511)	CKD 3-5D, $N = 23$	0.84					
	Ursem et al 2021 (512)	Dialysis, $N = 31$	0.79					
Whole PTH	Haarhaus et al 2015 (513)	HD, N = 40	0.85					
	Sprague et al 2016 (507)	HD, N = 450	0.71					48 ng/L
	Jorgensen et al 2021 (106)	CKD 4-5D, $N = 80$	0.82					
Bone ALP	Haarhaus et al 2015 (513)	HD, N=40	0.89					
	Sprague et al 2016 (507)	HD, N = 450	0.76					33 U/L
	Salam et al 2018 (105)	CKD 4-5D, $N = 43$	0.82	89	77	53	96	21 μg/L
	Nickolas et al 2020 (511)	CKD 3-5D, $N = 23$	0.78					
	Ursem et al 2021 (512)	Dialysis, $N = 31$	0.83					
	Jorgensen et al 2021 (106)	CKD 4-5D, $N = 80$	0.94					
Intact PINP	Salam et al 2018 (105)	CKD 4-5D, $N = 43$	0.79	80	75	50	92	57 ng/mL
	Jorgensen et al 2021 (106)	CKD 4-5D, $N = 80$	0.89					0
Total PINP	Sprague et al 2016 (507)	HD, N = 450	0.65					499 ng/mI
	Salam et al 2018 (105)	CKD 4-5D, $N = 43$	0.72	80	68	44	91	124 ng/mI
	Ursem et al 2021 (512)	Dialysis, N = 31	0.86					
TRACP5b	Salam et al 2018 (105)	CKD 4-5D, N=43	0.80	89	71	47	96	4.6 U/L
	Ursem et al 2021 (512)	Dialysis, $N = 31$	0.85					
	Jorgensen et al 2021 (106)	CKD 4-5D, $N = 80$	0.93					


Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Endocr Rev. 2023. doi: 10.1210/endrev/bnac031.

Bone Turnover Markers (BTM)-Pratica clinica

Condizione	Markers di riassorbimento	Markers di osteoformazione	Commenti
IperPTH primario			Paratiroidectomia I BTM con î massa ossea
Osteomalacia da qualunque causa		҈ BAP ☑ PINP, OC	La rimozione della causa porta ad û repentino dei BTM (da û mineralizzazione)
Malattia di Paget	ੀ uNTX ß-CTX non è utile	ी ALP (BAP), PINP	Raccomandata ALP per diagnosi, in alternativa BAP o PINP
OP da glucocorticoidi		↓ OC → PINP	Effetti dei GC poco definiti L'uso di BTM per monitorare la terapia antiriassorbitiva è complicato, soprattutto se la dose di GC varia
Ipertiroidismo	û uNTX, CTX	ûALP, BAP, OC	Il trattamento della causa normalizza BTM e û massa ossea
Artrite reumatoide	û uNTX	① OC	Terapia con metotressate ⇩ uNTX
Diabete T1/T2	CTX, TRAP5b		Aumentato rischio di frattura non spiegato da massa ossea

Bone Hormones-Osteocalcina nell'osso

- Essenziale per il corretto allineamento della BAP con le fibre di collagene
- Necessaria per la resistenza delle ossa lunghe in direzione longitudinale
- Favorisce la plasticità ossea.

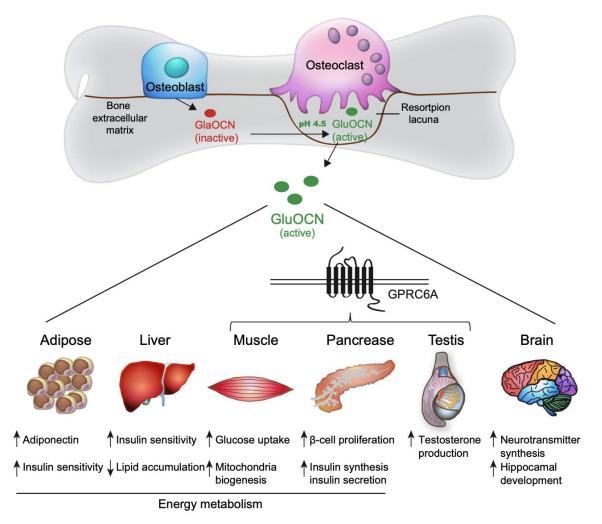
Bone Hormones-Osteocalcina: beyond bones

HHS Public Access

Author manuscript

Annu Rev Nutr. Author manuscript; available in PMC 2024 April 29.

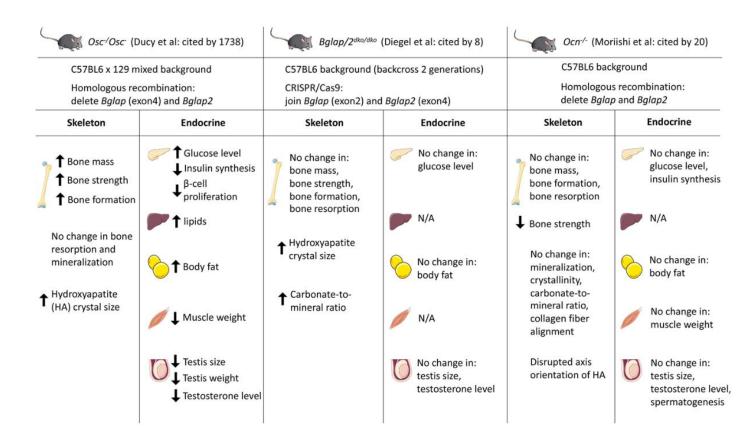
Published in final edited form as:

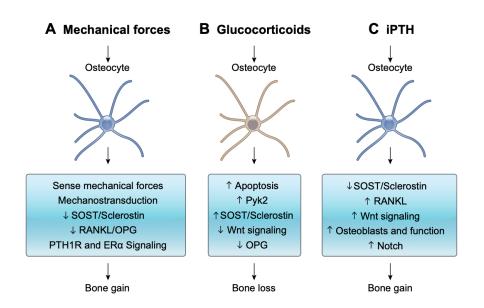

Annu Rev Nutr. 2023 August 21; 43: 55-71. doi:10.1146/annurev-nutr-061121-091348.

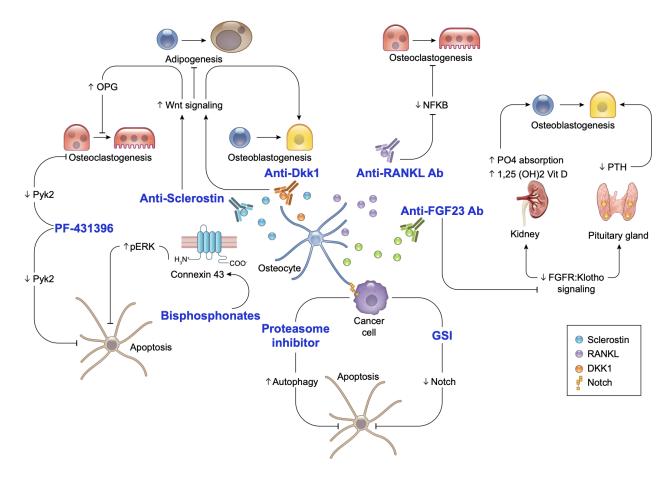
Osteocalcin: A Multifaceted Bone-Derived Hormone

Gerard Karsenty

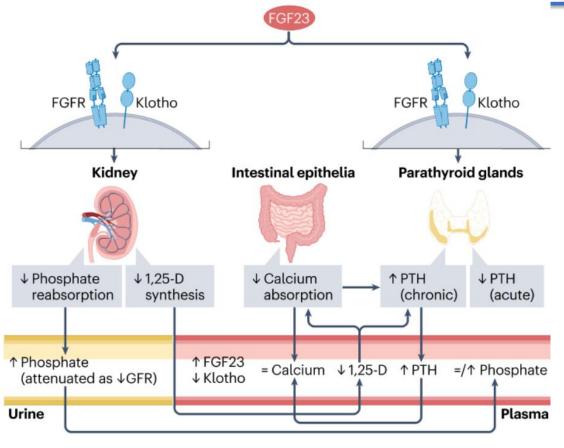
Departments of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA


- Gli effetti di OC sulla mineralizzazione sono trascurabili
- Perché l'evoluzione avrebbe creato un gene cellulo-specifico che produce una proteina talmente abbondante nell'organismo e senza un apparente scopo funzionale?
- È possibile che l'OC svolga il suo compito al di fuori dell'osso, come se fosse un ormone?

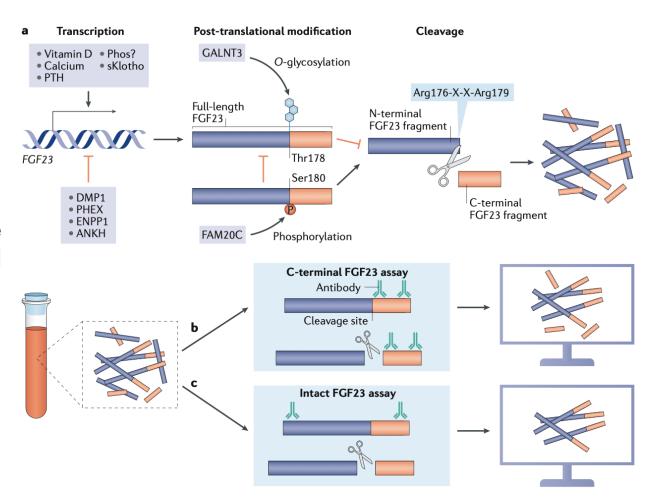

Bone Hormones-Osteocalcina: discussione aperta


- Esistono tre linee genetiche di topi Ocn^{-/-}:
 - Risultati discordanti sui parametri ossei
 - Risultati discordanti sul metabolismo energetico e la produzione di testosterone
 - Da confermare i risultati sul SNC
- Mancano studi di confronto diretto tra le linee genetiche
- Attualmente nessuna applicazione nella pratica clinica


Bone Hormones-Osteocita

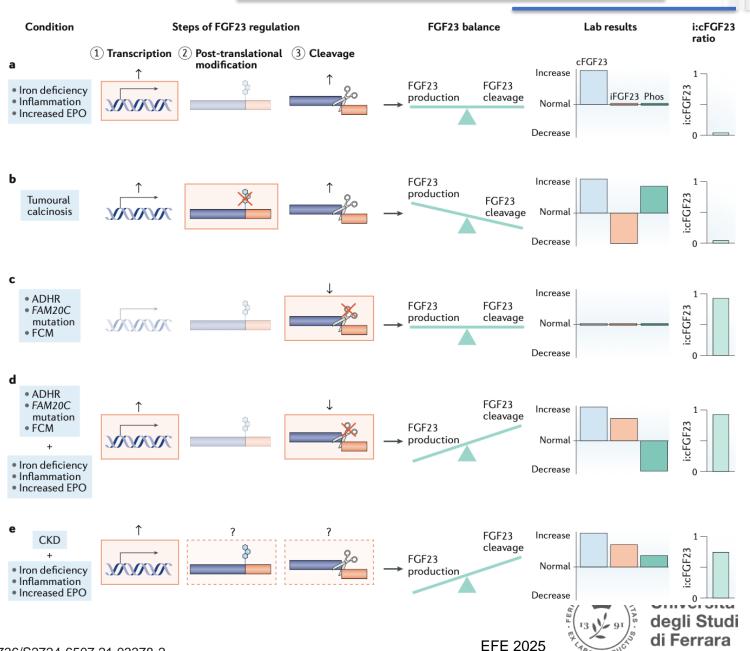

- Cellula più abbondante dell'osso, forma un network di comunicazioni tra tutte le cellule
- Risponde a stimoli meccanici e ormonali con meccanismi paracrini ed endocrini
- Molte terapie impiegate per patologie ossee agiscono su segnali mediati dagli osteociti

Bone Hormones-FGF23

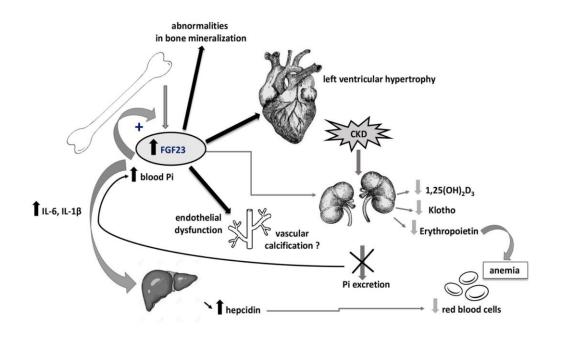


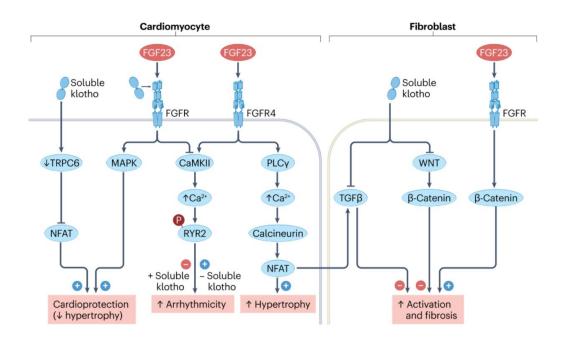
- Potente regolatore del metabolismo del fosfato secreto dagli osteociti
- Effetti canonici mediati in presenza del co-recettore Klotho
- Agisce primariamente a livello renale -> azione fosfaturica e riduce produzione di vitamina D attiva
- I livelli di FGF23 dipendono dalla fosforemia ma anche da PTH, Vitamina D, Epo, infiammazione, deficit Università

di ferro


Bone Hormones-FGF23

 Dopo la trascrizione l'FGF23 intatto subisce modifiche post-traduzionali che ne determinano il destino




Bone Hormones-FGF23

 Varie condizioni interferiscono con l'espressione genica, i processi posttraduzionali e/o il clivaggio portando a quadri biochimici variabili

Bone Hormones-FGF23, CKD e patologia cardiovascolare

- In corso di CKD i livelli di FGF23 aumentano precocemente e progressivamente con il peggioramento della funzione renale
- L'eccesso di FGF23 combinato a iperfosfatemia e carenza di Klotho può contribuire all'insorgenza di ipertrofia cardiaca, fibrillazione atriale e fibrosi cardiaca in condizioni di eccesso Università

Bone Hormones-FGF23 in pratica clinica

Disorders causing chronic hypophosphatemia.

Disorder (abbreviation)	OMIM#	Gene/Ref#	Pi	сСа	ALP/ BAP	intact FGF23*	intact PTH	urine Pi/day	urine Ca/day	25 OHD	1,25 OH ₂ D	Diagnosis
A-1. FGF23 related (inherited)												
X-linked hypophosphatemia (XLH)	307800	PHEX (XLD)	\blacksquare	N▼	_	A	N.	•	•	any	NV	Genetic test
Autosomal dominant hypophosphatemic rickets (ADHR)	193100	FGF23 (AD)	N▼	N▼	N.	A .	NA	A	•	any	NV	Genetic test
Autosomal recessive hypophosphatemic rickets 1 (ARHR1)	241520	DMP1 (AR)		N▼	A	A	N.	A	•	any	N▼	Genetic test
Autosomal recessive hypophosphatemic rickets 2 (ARHR2)	613312	ENPP1 (AR)	•	N▼	A	A	NA	A	•	any	NV	Genetic test
Autosomal recessive hypophosphatemic rickets 3 (ARHR3), Raine syndrome	259775	FAM20C (AR)	•	NV	A	A	N.	A	•	any	NV	Genetic test
Osteoglophonic dysplasia (OGD)	166250	FGFRI (AD)	•	N	N.	A	NA	A	N	any	N▼	Genetic test
Neurofibromatosis 1 (NF1)	162200	NF1 (AD)/[49]	•	N	_	A	NA	_	•	any	N▼	Genetic test
Hypophosphatemic rickets and hyperparathyroidism	612089	KL (AD)	•	N	A	A	**	A	•	any	N▼	Genetic test
A-2. FGF23 related (acquired)												
McCune-Albright syndrome (MAS), Fibrous dysplasia (FD)	174800	GNAS somatic mosaic	•	N▼	A	A	N▲	A	•	any	N▼	Genetic test of the affected lesion
Schimmelpenning-Feuerstein-Mims syndrome (SFM), Cutaneous skeletal hypophosphatemia syndrome (CSHS)	163200	NRAS, HRAS, KRAS somatic mosaic	•	N▼	A	A	N.	A	•	any	N▼	Genetic test of the affected lesion
Tumor-induced osteomalacia (TIO)		FN1-FGF1, FN1-FGF1 somatic variant	•	N▼	**	A	NA	•	•	any	N▼	Scintigraphy, FGF23 sampling
Ectopic FGF23 syndrome with malignancy		[50–53]	•	N▼	**	A	N▲	_	•	any	N▼	Advanced malignant tumor
Intravenous administration of saccharated ferric oxide, iron carboxymaltose, and iron polymaltose		[54–56]	•	N▼	N▲	A	NA	A	•	any	N▼	Cessation of drug use
Alcohol consumption-induced FGF23- related hypophosphatemia		[57]	N▼	N▼	A	A	N.	A	•	any	N▼	Cessation of alcohol use
Post-kidney transplantation hypophosphatemia		[58,59]	•	N▼	N.	A	N.	A	•	any	N▼	

TAKE HOME MESSAGES

- I marker di turnover osseo possono aiutare nel monitoraggio delle terapie antiriassorbitive e anaboliche
- Nella CKD-MBD i marker di turnover osseo (PINP, TRAP5b, BAP) possono aiutare a riconoscere condizioni a basso o alto turnover
- FGF23 è un potente ormone fosfaturico prodotto dall'osso, con una complessa regolazione e numerose interazioni con altri sistemi

GRAZIE!!

