

Con il Patrocinio di:

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Ferrara Azienda Unità Sanitaria Locale di Ferrara

RENDICORTO DELLE ADUNANZE MET Sentonia MEDICO-CHURURGICA

I FERRARA

UPDATE SULLA GESTIONE DEL RISCHIO DI FRATTURA

Marcatori ed ormoni dell'osso Aspetti Analitici

Martina Zaninotto

Bone Turnover Markers Basic Biology to Clinical Applications

Guidelines for the management of osteoporosis and fragility fractures

Ranuccio Nuti¹ · Maria Luisa Brandi² · Giovanni Checchia³ · Ombretta Di Munno⁴ · Ligia Dominguez⁵ · Paolo Falaschi⁶ · Carmelo Erio Fiore¹ · Giovanni Iolascon³ · Stefania Maggi⁶ · Raffaella Michieli⁷ · Silvia Migliaccio² · Salvatore Minisola¹ · Maurizio Rossini⁴ · Giuseppe Sessa⁸ · Umberto Tarantino⁸ · Antonella Toselli⁷ · Giovanni Carlo Isaia⁵

Laboratory diagnosis

Bone turnover markers

Bone turnover markers are mainly used to obtain information about the extent of new-bone-formation and resorption processes. They are overall indicators of skeletal remodelling, and, therefore, vary considerably at analytical and biological level: therefore, there is no indication for their use in routine evaluations of individual patients. In

Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis 2023

Samuel D. Vasikaran¹ · Masakazu Miura² · Richard Pikner^{3,4,5} · Harjit P. Bhattoa⁶ · Etienne Cavalier⁷ on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM)

Role of BTMs

BTMs concentrations in blood or urine are thought to reflect bone remodelling rate and hence they have been used to research metabolic bone diseases including Paget's disease of bone, osteoporosis and osteomalacia as well as metabolic bone disease of chronic kidney disease (CKD-MBD) in the last several decades. BTMs are also used in clinical practice, in conjunction with other diagnostic modalities, especially imaging studies, for the diagnosis and or monitoring of metabolic bone diseases

> BTMs are not useful for diagnosis of osteoporosis and are currently not included in fracture risk assessment, but are still useful in initial assessment of patients with osteoporosis to identify presence of secondary causes for osteoporosis, and are largely used for monitoring of therapy

POSITION PAPER

International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates

The Working Group (WG) proposed the following question: Can the bone turnover markers (BTMs) PINP and CTX be used to identify low adherence in patients with postmenopausal osteoporosis initiating oral bisphosphonates for osteoporosis?

Bone turnover markers

Measurement of bone turnover markers is considered as the most specific early method for measuring the biological effect of bisphosphonates. The WG focused on the two markers prioritized by the IOF, namely serum CTX and PINP

Bone metabolism diagnostics Current biomarkers

The IOF-IFCC Bone Markers Standard Working group

Recommendations for reference bone turnover markers

Serum CTx- choosed as reference standard for bone resorption

Rationale

1. The <u>standard in the assay is well characterised</u>, is an 8-aa peptide and this allows the development of clearly defined reference standard

2.it is likely that <u>most CTx is derived from osteoclastic resorption</u> given that treatments that reduce bone turnover reduce such markers to very low levels

3...

4. The *biological and analytical variability* have been well documented

5. The assay has been automated and widely available

6. The assay is *available for serum or plasma*

The IOF-IFCC Bone Markers Standard Working group

Recommendations for reference bone turnover markers

Serum PINP- choosed as the reference standard for bone formation

Rationale

- 1. PINP *reflects the synthesis* of the most abundant protein of bone tissue
- 2. The <u>standard is less well characterised</u>; mw is much larger than 35,000 D.
- 3. ...it is believed that *most PINP is produced during bone formation*; it has been evaluated already for fracture prediction and monitoring therapies
- 4.
- 5. The *biological and analytical variability* have been well documented
- 6. The *assay has been automated* and is widely avaialable

Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis 2023

Samuel D. Vasikaran¹ · Masakazu Miura² · Richard Pikner^{3,4,5} · Harjit P. Bhattoa⁶ · Etienne Cavalier⁷ on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM)

Table 4 Intra individual variation [within-subject (CV_I) biological variation (BV)] estimates for the reference BTMs for osteoporosis, PINP and β -CTX, with 95% confidence interval (CI), based on Cavalier et al.

Measurand	Mean value (95% CI)	CV _A % (95% CI) ^a	CV _I % (95% CI)
PINP, µg/L	63.7 (62.3–65.0)	3.7 (3.6–3.9)	8.8 (8.4–9.3)
β-CTX, ng/L	514.3 (499.5–529.1)	5.0 (4.8–5.3)	15.1 (14.4–16.0)

Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis 2023

Samuel D. Vasikaran¹ · Masakazu Miura² · Richard Pikner^{3,4,5} · Harjit P. Bhattoa⁶ · Etienne Cavalier⁷ on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM)

Serum or urine	Measurand	CVI
Serum	Procollagen type I N-propeptide (PINP)	7.4
	C-terminal telopeptide type I collagen (β-CTX)	10.9
	Osteocalcin	6.4
	Alkaline phosphatase, bone (B-ALP)	6.2
	Acid phosphatase tartrate-resistant (TRACP)	8.0
Urine	Deoxypyridinoline/creatinine, first morning	13.8
	Hydroxyproline/minute-excretion rate, first morning	36.1
	N-telopeptide type I collagen concentration	15.5
Serum	Parathyroid hormone (PTH)	25.9

Cyrcadian rythm of CTx

Time (h)

Determinants of BTM in healthy women

- A) Normal ranges in premenopausal women aged 20-25 y
- B) Normal ranges in women aged -45 y

Expected values in healthy subjects

Total P1NP

	Post-menopausal			Pre- menopausal
	All	HRT ^{b)} yes	HRT no	All
Ν	444	1 54	290	129
5 th percentile	16.27	14.28	20.25	15.13
Median	37.09	28.48	42.94	27.80
Mean	40.43	31.74	45.05	30.10
95th percentile	73.87	58.92	76.31	58.59

Beta- CTx

Age range (years)	Men			Women		
	Ν	GM ^{b)} (pg/mL)	95 % RI (pg/mL)	N	GM (pg/mL)	95 % RI (pg/mL)
< 29.9	39	492	238-1019	58	378	148-967
30-39.9	80	459	225-936	111	308	150-635
40-49.9	234	382	182-801	257	296	131-670
50-59.9	248	345	161-737	281	440	183-1060
60-69.9	303	316	132-752	234	408	171-970
>70	135	302	11 8-776	88	362	152-858
Pre- menopause	-	-	-	449	306	136-689
Post- menopause	-	-	-	578	424	177-1015

European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates of β -isomerized C-terminal telopeptide of type I collagen (β -CTX), N-terminal propeptide of type I collagen (PINP), osteocalcin, intact fibroblast growth factor 23 and uncarboxylated-unphosphorylated matrix-Gla protein—a cooperation between the EFLM Working Group on Biological Variation and the International Osteoporosis Foundation-International Federation of Clinical Chemistry Committee on Bone Metabolism

Table 10Reference changevalues (RCV) for a decrease inBTM following antiresorptivetherapy based on the biologicalvariation (BV) estimates

Measurand	RCV (%)
PINP	- 19.9
β-CTX	- 30.8

$$CD = K CV_A^2 + CV_I^2$$

K = 2.77

-RCV, CD, LSC-

the least amount of change between two consecutive BMD measurements can be considered clinically significant

Editorials

Controversies in Family Medicine

Should Bone Turnover Markers Be Used Routinely to Monitor Oral Bisphosphonate Osteoporosis Therapy?

TABLE 3

A 63-year-old postmenopausal woman treated with oral alendronate for osteoporosis

Background:

- History of breast cancer treated with lumpectomy, radiation therapy, and 5 years of tamoxifen
- Outside DXA scans showed a progressive decline in her lumbar spine T-score from -3.1 to -3.3
- Femoral neck bone density was stable
- · Past medical history was otherwise unremarkable
- No history of lactose intolerance, celiac disease, or chronic glucocorticoid use
- · She did not take calcium supplements, but took over-the-counter vitamin D
- No history of antifracture therapy.

The patient was prescribed oral alendronate 70 mg once weekly.

Bone mineral density and bone turnover markers:

	Before treatment	3 months	1 year
T-scores: Lumbar spine	NA		-2.6
Left femoral neck	NA		-1.5
Right femoral neck	NA		-1.5
Bone turnover marker: C-terminal telopeptide of type I collagen	653 pg/mL	361 pg/mL (45% reduction from baseline)	188 pg/mL (72% reduction from baseline)

Biomarkers of bone turnover Change from baseline after 3 months of treatment

Laboratorio clinico e metabolismo osseo: la valutazione del paziente

Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis

Aguilar et al, 2023

Pragmatic approach to patients with CKD G4-G5D and osteoporosis

Evenpoel P et al, 2021

Calcified Tissue International (2021) 108:512–527 https://doi.org/10.1007/s00223-020-00781-5

REVIEW

The Non-invasive Diagnosis of Bone Disorders in CKD

Table 2 Serum bone turnover biomarkers (
Biomarker	Common acronym	Renal clearance
Without renal clearance [#]		
Bone formation		
Total alkaline phosphatase	tAP, TAP, AP, ALP	No*
Bone-specific alkaline phosphatase	BSAP, bAP, BAP, BALP	No
Procollagen type 1 N-terminal propeptide ^{&}	Intact P1NP, PINP	No (intact PNP))
Bone resorption		
Tartrate-resistant acid phosphatase 5b	TRAP5b, TRACP-5b	No
With renal clearance [#]		
Bone formation		
Osteocalcin	OC, BGP, BGlaP,	Yes
Procollagen type 1 N-terminal propeptide	P1NP, PINP	Yes (total P1NP)
Procollagen type 1 C-terminal propeptide	P1CP, PICP	Yes
Bone Resorption		
Carboxy-terminal cross-linking telopeptide of type 1 collagen ^{&}	CTX, CTX-1, CTX-I	Yes
Amino-terminal cross-linking telopeptide of type 1 collagen	NTX	Yes
Cross-linked carboxyterminal telopeptide of type 1 collagen (generated by matrix metalloproteinases)	ICTP o CTX-MMP	Yes

Assessment of osteoclast number and function

TRACP-5b: measurement methods

The kidney-vascular bone axis in CKD-MBD

Kaur R et al, 2022

LA MEDICINA DI LABORATORIO: LA CULTURA DEL RINNOVAMENTO

Editorial

Mario Plebani*

Value-based laboratory medicine: the time is now

In the context of value-based laboratory medicine, a fundamental goal is to achieve <u>not only effi-</u> ciency but effectiveness, as the authors underline that "the effectiveness of clinical laboratory is achieved through understanding of the medical needs and delivering timely and high-quality tests. The role of clinical laboratories is closely linked to the increase in value; therefore, <u>the main objective</u> of the clinical laboratory professionals is to enhance the value of laboratory testing, optimizing their correct use both in the test selection request phase and in the reporting phase"